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  والاستشعارية المتنقلة العشوائية الشبكات في التداخل تقليص
  :قدم منم

  معالي عوض صابر حسن
  

  الملخص
  

هتماما متزايداً نتيجة للتوسع استشعار اللاسلكية في العقد الماضي شبكات الاو المتنقلة العشوائية الشبكات لاقى حقل

نتشار المعلومات اتصال اللاسلكي على سهولة تطوراته التقنية، آما ساعد الاالعملية والملحوظ في مجالاته 

هتمام تواجه نمو هذا ه لا يزال هناك تحديات جديرة بالاغير أن وتواصلها بما يفوق قدرة مجال الإنترنت السلكي،

تعرض مثل هذه الشبكات  نهاالمجال، فمثلاً طوبولوجيا هذا النوع من الشبكات تجعلها ضعيفة لعدة إعتبارات م

تعاني من  الشبكة طبولوجيات ذا آانفإ .للتداخل ومدى تأثيره على آفاءة و فاعلية هذا النوع الخاص من الشبكات

 اتأخير آما سيسبب، فيما بينهاالمتراسة يؤدي إلى تصادم إشارات الإتصال التي ترسلها العقد سهذا  ، فإنتداخللا

والتي هي نقطة  المزيد من الطاقةاستهلاك ب آل هذا سينتهيومن جهة أخرى ، المعنية لعقدلفي تسليم البيانات  اجدي

على أداء الشبكات ملحوظ تأثير سلبي  يشكلخل اتدال، نصل إلى استنتاج مفاده أن لذلك .ضعف هذه الشبكات

 ههذلتحكم في طوبولوجيا ا لياتآ ففي مجال البحث توصل الباحثون إلى استخدام ،والاستشعارية المتنقلة العشوائية

طوبولوجيا هو الحفاظ لتحكم بالمن وراء استخدام تقنية ا الحافز .تواجههاكثير من المشاآل التي الالشبكات في حل 

 ىخرأمن جهة و، خلالحد من التدوالذي يعني الحد من درجة العقدة آذلك لو، في الشبكة بين العقد الارتباطعلى 

عقدة يمكن أن تتداخل مع عقدة ال نأ الدراساتبعض  ريشآما ت .يةالعقد الاستشعارالحد من استهلاك الطاقة في 

تأخذ وطبولوجيا ال تحكم فيتستغل آليات ال تتصميم خوارزميا فإن لذا ،اتصالهاخارج نطاق  تأخرى حتى لو آان

عند فقد ( رسال حزمإتصادم وإعادة  قلل من، فهو من جهة يلتحسين أداء الشبكة ضروري في الحسبان التداخل أمر

. الشبكة عملزيد من فترة ييقلل من استهلاك الطاقة و - بشكل غير مباشر -والذي  )انات نتيجة التداخليحزم الب

على انشاء  وتعتمدخل االتد تأخذ في عين الاعتبار بناء طبولوجيال خوارزمية جديدةفي هذه الأطروحة، أقترح 

، وذات خلاالتدتراعي ، ةزعموبسيطة، خوارزمية  :IACDSخوارزمية  وهي من العقد مرتبطة مهيمنة مجموعة

مع  لا لزوم لهاالتي إيقاف العقد من العقد وذلك ب مرتبطة مهيمنة مجموعةتجد  فهي ،آفاءة في استخدام الطاقة

خوارزمية  .خلامع الحد الأدنى من التد لجميع النقاط آاملةاتصال وتوفير تغطية  مرتبطة،شبكة الالحفاظ على 

IACDS  أطوال فروع بينبالمفاضلة والذي يسمح  )خلاالتدوالطاقة و المسافة(تستخدم مقياس يعتمد على 

   ).خلاالطاقة والتد( الطوبولوجياقوة ومتانة وبين ) المسافة( الطوبولوجيا

  

المرتبطة،  المهيمنة مجموعة، التحكم في الطوبولوجيا، الالمتنقلة العشوائية الشبكاتالتداخل،  -آلمات مفتاحية

  IACDSاللاسلكية، خوارزمية  الاستشعارية الشبكات
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Interference Reduction in Mobile Ad Hoc and Sensor Networks 
By 

Maaly A. S. Hassan  
 

ABSTRACT 
There are still a lot of open questions in the field of MANETs and sensor networks. If a 

topology incurs a large interference, either many communication signals sent by nodes 

will collide, or the network may experience a serious delay at delivering the data for 

some nodes, and even consume more energy. So, we reach to the conclusion that 

interference imposes a potential negative impact on the performance of wireless 

networks. In the last few years, researchers actively explored topology control 

approaches for such networks. The motivation of topology control (TC) is to maintain 

the connectivity of the network, reduce the node degree and thereby reduce the 

interference, and reduce power consumption in the sensor nodes. Some literatures have 

pointed out that a node can interfere with another node even if it is beyond its 

communication range. To improve the network performance, designing topology 

control algorithms with consideration of interference is imminent and necessary. Since, 

it leads to fewer collisions and packet retransmissions, which indirectly reduces the 

power consumption and extends the lifetime of the network. In this thesis, we propose a 

new interference-aware connected dominating set-based topology construction 

algorithm, namely, IACDS algorithm, a simple, distributed, interference-aware and 

energy-efficient topology construction mechanism that finds a sub-optimal Connected 

Dominating Set (CDS) to turn unnecessary nodes off while keeping the network 

connected and providing complete communication coverage with minimum 

interference. IACDS algorithm utilizes a weighted (distance-energy-interference)-based 

metric that permits the network operator to trade off the lengths of the branches 

(distance) for the robustness and durability of the topology (energy and interference).  
 

Keywords- Interference, MANETs, Topology control, Connected Dominating Set 

(CDS), WSN, IACDS algorithm 
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CHAPTER 1     
 

Introduction  

1.1  Mobile Ad hoc NETworks (MANETs) 
1.1.1 Background 

A Mobile Ad hoc NETwork (MANET) is a temporary self-organizing multi-hop system 

of wireless mobile nodes which rely on each other to keep the network connected 

without the help of any preexisting infrastructure, pre-defined topology, or central 

administrator. These networks are generally formed in environments where it is difficult 

to find or settle down a network infrastructure [1]. In this type of networks, nodes must 

collaborate and organize themselves to offer both basic network services as routing and 

management services as security. 

1.1.2 Importance and Applications of MANETs 

There are many applications of MANETs. As a matter of fact, any day-to-day 

application such as electronic mail and file transfer can be considered to be easily 

deployable within an ad hoc network environment. Web services are also possible in 

case any node in the network can serve as a gateway to the outside world. This type of 

networks has been used in several applications where such network infrastructure is 

unavailable: space exploration, undersea operations, environmental monitoring, 

unreliable communication in battlefield, emergency rescue operations [2], industrial, 

commercial, cultural, sensor networks, communicating vehicles [3], etc. A wide range 

of possible military applications of ad hoc networks is not needed to be emphasized. 

Not to mention, the technology was initially developed keeping in mind the military 

applications, such as battlefield in an unknown territory where an infrastructure network 

is almost impossible to establish or maintain. In such situations, the ad hoc networks 

having self-organizing capability can be effectively used where other technologies 

either fail or cannot be deployed effectively. Advanced features of wireless mobile 

systems, including data rates compatible with multimedia applications, global roaming 

capability, and coordination with other network structures, are enabling new 

applications. Some well-known ad hoc network applications are: 
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Collaborative Work: For some business scenarios, the need for collaborative computing 

might be more important outside office environments than inside a building. After all, it 

is often the case where people do need to have outside meetings to cooperate and 

exchange information on a given project. 

Crisis-Management Applications: These arise, for example, as a result of natural 

disasters where the entire communications infrastructure is in disarray (for example, 

Tsunamis, hurricanes, etc.). Restoring communication quickly is essential. By using ad 

hoc networks, an infrastructure could be set up in hours instead of day/weeks required 

for wire-line communications. 

Personal Area Networking: A personal area network (PAN) is a short-range, localized 

network where nodes are usually associated with a given person. These nodes could be 

attached to someone's cell phone, pulse watch, belt, and so on. In these scenarios, 

mobility is only a major consideration when interaction among several PANs is 

necessary. Bluetooth is an example of a technology aimed at, among other things, 

supporting PANs by eliminating the need of wires between devices such as printers, cell 

phones, PDAs, laptop computers, headsets, and so on. 

1.1.3 Challenges in MANETs 

MANET is characterized by limited battery power, limited bandwidth, frequent network 

topology changes, and rapid mobility. Frequent topology changes result when nodes 

move or fail or when devices are turned on or off. These characteristics make the design 

of management solutions and routing protocols a great challenge [4]. A node in ad hoc 

networks can communicate directly with other nodes located within its radio 

transmission range. To communicate with a node outside its communication range a 

sequence of intermediate nodes in ad hoc networks are required to relay messages on 

behalf of this node, resulting in a multi-hop wireless network. The mobility of nodes in 

ad hoc networks causes the nodes to be in and out of range from one another; therefore, 

the connectivity in MANET varies dynamically with time. This dynamic connectivity 

imposes major challenges for the network layer to determine the multi-hop route 

between a given pair of source and destination nodes. 

A wireless network is more than simply a wired network without the wires. The 

introduction of the wireless medium comes with its own set of challenges, which are 
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magnified by mobility and multi-hop communication in the case of MANET; see Figure 

1.1(originally appeared in [5]). This subsection lists some of the major challenges which 

exist in MANETs. 

 
Figure 1.1: Challenges in MANETs. 

Dynamic Nature: The nodes in MANETs are mobile, and dynamically appear or 

disappear, which leads to a highly dynamic topology, with a high probability of link 

breakage and network partitions. Even when the nodes are not mobile, the wireless 

nature of communication changes the status of the wireless links rapidly and 

unpredictably, which also leads to rapid changes in the topology. 

Energy Constraints: As a consequence of mobility, nodes in MANETs are generally 

portable, and hence are low powered, with limited and exhaustible energy resources like 

batteries. This is exacerbated by the fact that the nodes spend extra energy while 

handling traffic for other nodes as well as while just listening for packets. Energy 

conservation is thus critical in such networks. 

Interference and Congestion: Due to the shared medium, the packet is sent as radio 

waves which cause interference in the area surrounding the sender. Interference also 

exists from other wireless devices like microwaves and cordless phones, which may be 

sharing the wireless medium. Thus, compared to wired networks, there is an increased 

possibility of packet losses due to collision and congestion in MANETs [5]. 
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Bandwidth: MANETs is also limited to a lower maximum available bandwidth 

(11Mbps in 802.11b, and 54Mbps in 802.11a/g) as compared to wired networks. Even 

this maximum is only theoretical, since the shared medium and the resulting 

interference limit the available bandwidth in real networks (for example, maximum of 

4-5Mbps for 802.11b in reality [6, 7]). 

Others: The portability of mobile nodes also means limited storage resources, while all 

the characteristics of MANETs described above also make providing security as well as 

scalability of such networks quite challenging. 

1.2  Wireless Sensor Networks (WSNs) 
1.2.1 Background 

A wireless sensor network (WSNs) is a wireless network consisting of spatially 

distributed autonomous devices using sensors to cooperatively monitor physical or 

environmental conditions, such as temperature, sound, vibration, pressure, motion, or 

pollutants, at different locations [8, 9].  

Wireless sensor networks (WSNs) are a particular type of ad hoc networks, in which the 

nodes are sensors equipped with wireless transmission capability. Hence, they have the 

characteristics, requirements, and limitations of an ad hoc network [10]. The term ad 

hoc network describes a type of wireless network without a fixed infrastructure. 

Conventional wireless networks including WiFi and cellular networks have supporting 

backbones and are hierarchical. Nodes communicate with each other via the base 

stations. In an ad hoc network the nodes can communicate with each other directly via 

multi-hops paths. Usually the network does not have any coordinating node and hence, 

ad hoc networks are decentralized, self-organized, and self-healing. Messages may be 

duplicated on the way to the base station to provide extra resilience [11]. 

A WSN is usually composed of a large number of sensing nodes in the order of tens, 

hundreds, or even thousands scattered in a sensor field and one or a few base stations/ 

sinks, which connect the sensor networks to the users via the Internet or other networks. 

Sensor nodes are equipped with sensing, data processing, and communicating 

components to accomplish their tasks. Each of the sensor nodes is capable of collecting 
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data and routing the data back to the sink by multi-hopping, as illustrated in Figure 1.2 

(originally appeared in [10]). 

 
Figure 1.2: Basic structure of a wireless sensor network. 

In addition to one or more sensors, as shown in Figure1.3, each node in a sensor 

network is typically equipped with a radio transceiver or other wireless communication 

devices, a small microcontroller, memory, an input/output interface that allows the 

integration of external sensors into the wireless device, and an energy source, usually a 

battery. The envisaged size of a single sensor node can vary from shoebox-sized nodes 

down to devices the size of grain of dust. The cost of sensor nodes is similarly variable, 

ranging from hundreds of dollars to a few cents, depending on the size of the sensor 

network and the required complexity of individual sensor nodes. Size and cost 

constraints on sensor nodes result in corresponding constraints on resources such as 

energy, memory, computational speed, and bandwidth [10]. 

 
Figure 1.3: General architecture of a wireless sensor device. 
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1.2.2 Importance and Applications of WSNs 

The development of wireless sensor networks was originally motivated by military 

applications such as battlefield surveillance [12, 13]. However, wireless sensor 

networks are now used in many industrial and civilian application areas including 

industrial process monitoring and control [14], machine health monitoring, environment 

and habitat monitoring [15, 16], healthcare applications, home automation, and traffic 

control [10-11, 17]. The applications for WSNs are many and varied, but typically 

involve some kind of monitoring, tracking, and controlling. Specific applications for 

WSNs include habitat monitoring, object tracking, nuclear reactor control, fire 

detection, and traffic monitoring. In a typical application, a WSN is scattered in a region 

where it is meant to collect data through its sensor nodes. 

1.2.3 Challenges in WSNs 

WSNs are characterized by the limited power they can harvest or store, ability to 

withstand harsh environmental conditions, ability to cope with node failures, mobility of 

nodes, dynamic network topology, communication failures, heterogeneity of nodes, 

large scale of deployment, and unattended operation. In general, WSNs share 

commonalities with existing wireless ad hoc networks which use multi-hop 

communication (several nodes may forward data packets to the base station) without 

centralized coordination. WSNs present a series of serious challenges that still need 

considerable research effort. While some of these challenges are a direct consequence of 

the constrained availability of resources in the wireless sensor nodes, and therefore very 

specific to WSNs, others are common challenges faced by most networking 

technologies. The following list briefly explains the most important challenges faced by 

WSNs today. 

Network lifetime: WSNs are battery powered, therefore, the network lifetime depends 

on how wisely energy is used. In large scale wireless sensor networks or in dangerous 

applications (e.g., fire rescue applications, safety control systems) it is important to 

minimize the number of times batteries need to be changed. It is desirable to have 

network lifetimes in the order of one or more years. In order to achieve such long 

network lifetimes it is imperative to operate the sensors in a very low duty cycle.  
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Scalability: Some applications require hundreds or even thousands of wireless sensor 

devices. These large-scale WSNs present new challenges not seen in small-scale ones. 

Algorithms and protocols that work fine in small-scale networks do not work 

necessarily well in large-scale ones. One typical example is the routing function. Small-

scale networks can easily run well-known proactive or reactive routing protocols using 

Dijkstra's shortest path algorithm. However, this approach will not be energy-efficient 

for large-scale WSNs. Location-based routing mechanisms using local information are 

better suited instead. Similar scalability problems arise in other areas. 

Interconnectivity: WSNs need to be interconnected so that data reaches the desired 

destination for storage, analysis, and possible action. WSNs are envisioned to be 

interconnected with many different networking technologies. However, this is easier 

said than done. New protocols and mechanisms need to be designed to achieve these 

interconnections and allow the transfer of data to and from WSNs. Normally these 

interconnections are being handled by the use of gateway devices, such as the sinks, 

which require new capabilities for the appropriate discovery of networks and the 

translation of different communication protocols. 

Reliability: Wireless sensor devices are cheap devices with fairly high failure rates. 

Further, in many applications, these devices have to be thrown to the area of interest 

from a helicopter, or similar vehicle. As result, several nodes break or partially break 

affecting their normal functionality. Node reliability is also affected by crucial levels of 

available energy. 

Heterogeneity: New WSNs are embedding wireless sensor devices with different 

capabilities and functionalities that require new algorithms and communication 

protocols. For example, cluster-based architectures may utilize more powerful devices 

to aggregate data and transmit information on behalf of resource constraint nodes. This 

heterogeneity includes the need of clustering and data aggregation algorithms that are 

not of trivial design. 

Privacy and security: Privacy and security are normal concerns in networking, and 

WSNs are not the exemption. However, security mechanisms are usually very resource 

demanding, which is not always in line with the resources availability. 
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Energy: Since the motto of sensor network is to develop tiny sensor nodes cheap 

enough to dispose without recharging battery, the energy conservation is a critical issue 

in WSNs. For instance, a sensor node, Mote, has a total stored energy on the order of 1J 

[18]. For wireless integrated network sensors (WINS) [20], the total average system 

supply currents must be less than 30 mA to provide long operating life. Moreover, 

inaccessibility of sensor nodes after deployment makes energy consumption more 

critical in wireless sensor networks. 

Scalability: To cover areas with sensors which have short transmission distances due to 

frugal energy budget, WSNs have to scale to much large numbers (more than 10,000) of 

sensor nodes. Without any centralized coordination, scalability of WSNs makes itself 

different than wireless ad hoc networks which have up to a few thousands of nodes. 

Redundancy: Due to the frequent node failures and inaccessibility of failed nodes, 

WSNs are required to have high redundancy. Therefore, sensor nodes are normally 

deployed with a high degree of connectivity instead of minimal connectivity. Because 

of the high degree of redundancy, the failure of single node can be negligible. At the 

same time, the redundancy has negative effects on the performance of WSNs because it 

causes redundant transmission causing broadcast storm problem [20]. 

In-network Processing: In general, previous transport protocols used in wired and 

wireless networks have assumed the end-to-end approach guaranteeing that data from 

senders should not be modified by intermediate nodes until data reach a receiver. 

However, data at WSNs can be modified or reduced into smaller amount of data by 

intermediate nodes in order to remove redundancy of information inside data. 

Therefore, previous solutions cannot accommodate this new concept of in-network 

processing, called data aggregation or diffusion in WSNs. 

Data Centric Processing: WSNs have a large scale in terms of number of nodes which 

cannot be assigned individually with unique identification, e.g., IP address. Therefore, 

sensor nodes cannot be accessed by unique ID. Instead of addressing nodes with ID, it is 

more natural to access the data directly through content, attribute, e.g., location of node. 

The naming schemes in WSNs are often data-oriented. For example, an environmental 

monitoring system requests the temperature readings through a query, such as "collect 

temperature readings in the region bound by the rectangle (x1,y1,x2,y2)", instead of a 
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query such as "collect temperature readings from a set of nodes of which addresses are 

x, y, and z." 

1.3  Interference 
1.3.1 Interference in MANETs and Sensor Networks 

One of the main challenges of wireless communication is interference. Unfortunately, 

research in this area is so young that researchers have to investigate different ideas 

regarding the identification of a universal measure of network interference. According 

to the Glossary of Telecommunication Terms - Federal Standard 1037C, interference is 

defined as: 

Interference: A coherent emission having a relatively narrow spectral content, e.g., a radio 

emission from another transmitter at approximately the same frequency, or having a 

harmonic frequency approximately the same as another emission of interest to a given 

recipient, and which impedes reception of the desired signal by the intended recipient. 

Informally speaking, a node u may interfere with another node v if u's interference 

range unintentionally covers v. Consequently, the amount of interference experienced 

by a node v corresponds to the amount of interference produced by nodes whose 

transmission range covers v. 

1.3.2 Interference Reduction in MANETs and Sensor Networks 

In frequency division multiplexing cellular networks, reducing the amount of 

interference results in fewer channels, which in turn, can be exploited to increase the 

bandwidth per frequency channel. In systems using code division multiplexing, small 

interference helps in reducing coding overhead. In the context of ad hoc and sensor 

networks, there is an additional motivation for keeping interference low. In these 

networks consisting of battery driven devices, energy is typically scarce and the frugal 

usage of it is critical in order to prolong system operability and network lifetime. In 

addition to enhancing throughput, minimizing interference may help in lowering node 

energy dissipation by reducing the number of collisions (or amount of energy spent in 

an effort of avoiding them) and consequently retransmissions on the media access layer. 

Interference can be reduced by having nodes send with less transmission power. The 

area covered by the smaller transmission range will contain fewer nodes, yielding less 
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interference. On the other hand, reducing the transmission range has the consequence of 

communication links being dropped. However, there is surely a limit to how much the 

transmission power can be decreased. In ad hoc networks, if the node's transmission 

ranges become too small and too many links are abandoned, the network may become 

disconnected. Hence, transmission ranges must be assigned to nodes in such a way that 

the desired global network properties are maintained. 

1.4  Topology Control 
1.4.1 Definition of Topology Control 

Topology Control (TC) is one of the most important techniques used in wireless ad hoc 

and sensor networks to reduce energy consumption (which is essential to extend the 

network operational time) and radio interference (with a positive effect on the network 

traffic carrying capacity). The goal of this technique is to control the topology of the 

graph representing the communication links between network nodes with the purpose of 

maintaining some global graph property (e.g., connectivity), while reducing energy 

consumption and/or interference that are strictly related to the nodes' transmitting range. 

An informal definition of topology control is the art of coordinating nodes, decisions 

regarding their transmitting ranges, in order to generate a network with the desired 

properties. Interference-efficient topology control is to find a sub-graph H from the 

original graph G, representing a network, to minimize interference while preserving 

fixed properties (connectivity and low power consumption). Topology control is a 

system-level perspective to optimize the choice of the nodes' transmit power levels to 

achieve a certain global property while power control is a wireless channel perspective 

to optimize the choice of the transmit power level for a single wireless transmission, 

possibly along several hops. 

1.4.2 Motivation of Topology Control 

Topology control techniques have the potential to mitigate two important problems 

occurring in wireless ad hoc networks: node energy consumption and radio interference.  

Another major requirement of topology control in MANETs and sensor networks is to 

maintain connectivity in the network. Once the connectivity is ensured, the second goal 

is usually to reduce the radio transmission power of individual nodes for two reasons. 

The first is to reduce the power used for transmitting packets. The second one is to 
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reduce the node degree in the neighborhood. A sparse network is desirable because it 

can enhance the performance of the MAC protocols. If a CSMA type scheme is used, 

low network degree means less probability of collisions. If a TDMA scheme is used, 

slot assignment is easier with fewer nodes and there is less chance of congestion. 

Moreover, routing is simpler in a sparse network than a dense network because there are 

fewer routes to consider. 

1.4.3 Topology Construction and Maintenance 

Topology control has been divided into two sub problems: topology construction, which 

concerns the initial reduction, and topology maintenance, which concerns the 

maintenance of the reduced topology so that characteristics like connectivity and 

coverage are preserved. 

Once the initial topology is deployed, especially when the location of the nodes is 

random, the administrator has no control over the design of the network; for example, 

some areas may be very dense, showing a high number of redundant nodes, which will 

increase the number of message collisions and will provide several copies of the same 

information from similarly located nodes. However, the administrator has control over 

some parameters of the network: transmission power of the nodes, state of the nodes 

(active or sleeping), role of the nodes (cluster-head, gateway, regular), etc. By 

modifying these parameters, the topology of the network can change. 

Upon the same time a topology is reduced and the network starts serving its purpose, 

the selected nodes start spending energy: The "optimal" reduced topology stops being at 

the first second of full activity. After some time being active, some nodes will start to 

run out of energy. Especially in wireless sensor networks with multi-hoping, it is a fact 

that nodes that are closer to the sink spend higher amounts of energy than those farther 

away due to packet forwarding. The network must restore the reduced network 

periodically in order to preserve connectivity, coverage, density, and any other metric 

that the application requires. 

A. Topology Construction Algorithms 

There are many ways to perform topology construction: by changing the transmission 

range of the nodes, turning off nodes from the network, creating a communication 
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backbone, and clustering. Figure 1.4 shows the classification of topology control 

algorithms [21]. The hierarchical and non-hierarchical algorithms form the upper 

categories of topology control algorithms. 

   
Figure 1.4: Classification and examples of topology control algorithms. 

Some hierarchical topology control algorithms are based on the construction of a 

backbone such as connected dominant set (CDS) for efficient communication. Other 

hierarchical algorithms divide the whole network into communication clusters for 

management and energy conservation [22]. The non-hierarchical category is classified 

into physical or logical algorithms based on their optimization objective. In general, 

physical topology control algorithms determine the optimal transmission ranges of 

nodes, while logical topology control algorithms determine the optimal neighbor sets of 

nodes. Logical TC algorithms can be viewed as "pruning" a communication graph to 

remove redundant edges on the graph. The major contribution of a physical TC is to 

generate a reliable underlying structure for connectivity, while a logical TC focuses on a 

generating a sparse graph, which can simplify the process of routes finding. Physical TC 

algorithms solve what is called the range assignment problem. 

Non-hierarchical topology construction algorithms 

1) Geometry based: Gabriel graph (GG) [23], Relative neighborhood graph (RNG) 

[24] 

2) Spanning Tree based: LMST [25] 

3) Direction based: Yao and Nearest neighbor graph [26, 27], Cone Based 

Topology Control (CBTC) [28],  

4) Neighbor based: KNeigh [29], XTC [30]  
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5) Routing based: COMPOW [31] 

Hierarchical topology construction algorithms 

1) CDS-based: EECDS [32], CDS-Rule K [33]  

2) Cluster-based: Low Energy Adaptive Clustering Hierarchy (LEACH) [34], 

HEED [35]  

B. Topology Maintenance Algorithms 

In the same manner as topology construction, there are many ways to perform topology 

maintenance: by global algorithms, local algorithms, dynamic algorithms, static 

algorithms, hybrid algorithms, and algorithms triggered by time, energy, density, and 

randomly.  

Global topology maintenance algorithms [36]  

1) Dynamic Global Topology Recreation (DGTRec): periodically, wake up all 

inactive nodes, reset the existing reduced topology in the network and apply a topology 

construction protocol. 

Dynamic Global Time-based Topology Recreation – DGTTRec: Every time interval the 

topology maintenance algorithm terminates the previous reduced topology and invokes 

the topology construction algorithm to create a new one. 

Dynamic Global Energy-based Topology Recreation – DGETRec: Every time a node 

reaches a critical energy threshold, the TM algorithm terminates the previous reduced 

topology and invokes the topology construction algorithm to create a new one. 

2) Static Global Topology Rotation (SGTRot): initially, the topology construction 

protocol must create more than one reduced topology (hopefully as disjoint as possible). 

Then, periodically, wake up all inactive nodes, and change the current active reduced 

topology to the next, like in a Christmas tree. 

3) Hybrid Global Topology Rotation and Recreation (HGTRotRec): works as the 

SGTRot, but when the current active reduced topology detects a certain level of 

disconnection, resets the reduced topology and invokes the topology construction 

protocol to recreate that particular reduced topology. 

Hybrid Global Time-based Topology Rotation and Recreation – HGTTRotRec: Every 

time interval the topology maintenance algorithm rotates the active reduced topology 

for one of the preplanned ones. If the new preplanned topology cannot provide the 
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expected service (has no connection with the sink), the hybrid TM algorithm invokes 

the topology construction algorithm to create a new reduced topology on the fly. 

Hybrid Global Energy-based Topology Rotation and Recreation – HGETRotRec: Every 

time a node reaches a critical energy threshold, the topology maintenance algorithm 

rotates the active reduced topology for one of the preplanned ones. If the new 

preplanned topology cannot provide the expected service (has no connection with the 

sink), the hybrid topology maintenance algorithm invokes the topology construction 

algorithm to create a new reduced topology on the fly. 

Local topology maintenance algorithms [36] 

1) Dynamic Local DSR-based Topology Maintenance (DL-DSR): this protocol, 

based on the Dynamic Source Routing (DSR) routing algorithm, recreates the paths of 

disconnected nodes when a node fails. 

1.5  Connected Dominating Set 
Definition of minimum dominating set (MDS) 

In a graph, a dominating set is a subset of nodes such that for every node v in graph, 

either a) v is in the dominating set or b) a direct neighbor of v is in the dominating set. 

The minimum dominating set problem asks for a dominating set of minimum size. Its 

formal definition is as follows: 

Instance: A graph G = (V, E). 

Problem: Find a subset D with minimum cardinality for G, i.e., a subset D ك V such 

that for all u א V - D, there is a d א D for which (u, d) א E. 

In common, connected minimum dominating set problems try to find a subset covering 

neighbors with minimum cardinality. In network research area, MDS problem has been 

considered as one of popular approaches to solve various networking problems [37]. 

1.6  Motivation 
In this thesis, we focus on the interference aspects of wireless mobile ad hoc and sensor 

networks. The interference imposes a potential negative impact on the performance of 

wireless networks. Hence interference reduction is essential for such networks. The 

main aim of this thesis is to investigate the performance of wireless ad hoc and sensor 

networks in terms of interference reduction. As we will see in Chapter 3, a device is 
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interfered if it receives transmissions, most of which may not be intended for it. Hence 

it is crucial to actively account for and attempt to reduce the excess interference due to 

this mistaken receive. However, the existing models for interference reduction mistake 

nodes within the transmission range for the only hidden interfering ones. Distinctly, for 

a node, all active neighbors within its interference range are potential interfering 

sources. Our goal is to study the effect of interference reduction through TC on the 

performance of ad hoc and sensor networks, by introducing an explicit computational 

model of node interference based on its actual inducement on the physical layer. In this 

study, we also propose an interference-aware topology construction algorithm to solve 

the corresponding topology control problem: constructing a network topology with 

minimum node interference. 

1.7  Research Overview 
In this thesis, we introduce and validate a novel interference measurement model. Based 

on the evaluation of such model, a new topology construction algorithm is proposed, 

namely, IACDS algorithm, a simple, distributed, interference-aware, and energy-

efficient topology construction mechanism that finds a sub-optimal Connected 

Dominating Set (CDS) to turn unnecessary nodes off while keeping the network 

connected and providing complete communication coverage with minimum 

interference. IACDS algorithm utilizes a weighted (distance-energy-interference)-based 

metric that permits the network operator to trade off the lengths of the branches 

(distance) for the robustness and durability of the CDS (energy and interference).  

1.7.1 Approach and Methodology 

For this research, we have adopted the following approach: 

• Re-visitation of the problem of interference reduction in ad hoc and sensor 

networks. 

• Development and evaluation of model for interference reduction. 

• Design of interference-aware topology construction scheme, IACDS, based on 

the proposed model of interference reduction. 

• Empirical evaluations of the proposed scheme through extensive simulations 

which compare the proposed algorithm to the existing ones. 
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• Refinement and selection of the best maintenance policy for the proposed 

topology construction algorithm based on thorough analysis. 

1.7.2 Original Contributions 

The major contributions of this thesis are summarized as follows: 

1. A new interference measurement model is introduced with the following 

properties: it creates a relationship between all local parts of the network, and 

takes into account the maximum interference of the network. The proposed 

interference metric, Equation 3.9, is embedded in a selection metric, Equation 

3.10, which produces a value between 0 and 1 that is assigned to each neighbor 

in the process of selecting the new nodes in the CDS; the higher the value of the 

metric, the higher the priority. As it can be seen from Equation 3.10, the 

selection metric gives priority to those nodes with minimum interference, higher 

energy, and which are farther away from the parent node. The final effect of this 

choice is to have a CDS with minimum interference, fewer active nodes, and 

better coverage. However, proper weight manipulation can satisfy different 

criteria, as needed. As the main goal of the proposed algorithm is to reduce the 

global interference of the network, the interference metric is weighted to its 

maximum value, 1. If communication coverage is to be optimized and the 

average height of the node in the CDS (number of hops) needs to be reduced, the 

distance metric must be weighted more heavily. The downside is that low energy 

nodes may be included in the CDS, which may introduce early failures of nodes, 

and therefore reduce the lifetime of the network. On the other hand, if reliability 

of the tree is desired, energy must be weighted more. The model is validated 

since the evaluation gives a realistic and accurate calculation of the total 

interference at a node. 

2. Based on the proposed interference measurement model, an aspect of 

interference-awareness for performance efficiency in ad hoc and sensor 

networks is explored, specifically through the design and analysis of an 

interference-aware topology construction algorithm, namely, IACDS, a simple, 

distributed, interference-aware and energy-efficient topology construction 

mechanism that finds a sub-optimal Connected Dominating Set (CDS) to turn 



www.manaraa.com

17 
 

unnecessary nodes off while keeping the network connected and providing 

complete communication coverage with minimum interference. IACDS 

algorithm utilizes a weighted (distance-energy-interference)-based metric that 

permits the network operator to trade off the lengths of the branches (distance) 

for the robustness and durability of the CDS (energy and interference).  

3. The best maintenance policy for the proposed topology construction algorithm is 

determined through an extensive sensitivity analysis performed on a topology 

maintenance scheme. 

The evaluation of the proposed interference reduction scheme has been performed with 

the help of simulations, using various network parameters which are as close to the 

realistic scenarios as possible. In addition to the total interference, a more complete 

evaluation is presented, by evaluating the overall network lifetime, total coverage area, 

spent energy ratio, as well as the number of sent messages. 

1.7.3 Thesis Organization  

The rest of the thesis is organized into five chapters, followed by the appendices. 

Chapter 2 gives a background for interference reduction through topology control in 

MANET and sensor networks. Related works in terms of existing topology control 

techniques are discussed in Section 2.1 while existing interference-aware topology 

control protocols are discussed in Section 2.2.  

Chapter 3 introduces an analytical model for measuring the interference in the network. 

A new interference-aware topology construction algorithm is proposed in Section 3.2. 

Chapter 4 evaluates the performance of the proposed interference-aware topology 

construction algorithm, through a detailed empirical analysis and comparisons with 

other existing algorithms.  

Finally, Chapter 5 concludes the thesis with a summary of the major achievements of 

the study and outlines the future works. 
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CHAPTER 2 
 

Related Works 
2.1  Topology Control 

Topology construction can be exercised by reducing the transmission range of all nodes 

by the same minimum amount, or the minimum transmission range for each node [38]. 

Other techniques are based on the assumption that nodes have information about their 

own positions and the position of their neighbors [39], or that they have directional 

antennas that are used to determine the orientation of the nodes [40, 41]. Although both 

assumptions are valid, they are costly and not easy to implement. Other topology 

control methods, such as the one considered in this thesis, are based on the Connected 

Dominating Set (CDS) paradigm. Here, the idea is not to change the transmission range 

of the nodes but to turn unnecessary nodes off while preserving important network 

properties, such as connectivity and communication coverage. 

The CDS approach has been utilized in several papers [40, 42-48]. Most CDS-based 

mechanisms work in two phases: In phase one, they create a preliminary version of the 

CDS, and in phase two they add or remove nodes from it to obtain a better 

approximation to the optimal CDS. Two relevant CDS-based mechanisms are the 

Energy Efficient CDS (EECDS) [47] and the CDS-Rule-K [44] algorithms. 

The EECDS algorithm builds a CDS tree creating Maximal Independent Sets (MIS), 

which are clusters with non-connected clusterheads, and then selects gateway nodes to 

connect the clusterheads of the independent sets. The EECDS algorithm proceeds in two 

phases. The first phase begins with an initiator node that elects itself as a clusterhead 

and announces it to its neighborhood. This set of nodes is now "covered". The now 

"covered" nodes will pass the message to its uncovered neighbors, 2-hop away from the 

initiator, which start competing to become clusterheads. Once there is a new 

clusterhead, the process repeats with the 4-hop away nodes from the initiator, until there 

are no more uncovered nodes. On the second phase the covered non-clusterhead nodes 

compete to become gateways between the clusterheads. 
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The CDS-Rule-K ` utilizes the marking algorithm proposed in [47] and the pruning rule 

included in [46]. The idea is to start from a big set of nodes that accomplishes a 

minimum criterion and prune it according to a specific rule. In the first phase, the nodes 

will exchange their neighbor lists. A node will remain active if there is at least one pair 

of unconnected neighbors. In the second phase, a node decides to unmark itself if it 

determines that all its neighbors are covered by marked nodes with higher priority, 

which is given by the level of the node in the tree: lower level, higher priority. The final 

tree is a pruned version of the initial one with all redundant nodes with higher or equal 

priority removed. 

Cone Based Topology Control (CBTC) [28] is based on an angular separation 

parameter α, and distance estimate between the nodes and the neighbor. The 

fundamental concept of CBTC is that a node u tries to find the minimum power pu,α 

such that transmitting with pu,α ensures that in every cone of degree α around u, there is 

some node that u can reach with power pu,α. It was proven in [28] that if α ≤ 5π/6 then 

connectivity is preserved. CBTC also has an optimization stage (logical TC) to identify 

energy inefficient stages. CBTC guarantees connectivity provided that the network is 

connected when all nodes are transmitting with their maximum power. However, the 

major problem of implementing CBTC is the requirement for directional information, 

which may not be available in common sensor nodes. 

XTC [30] is a logical topology control algorithm that aims at generating a graph 

optimized for routing. It does not require node positions of an ad hoc network. Rather, it 

depends on the "link quality" of neighbors, which can be signal attenuation, Euclidean 

distance, or packet arrival rate to evaluate the quality of a neighbor connection. The 

operation of XTC starts with neighbors ordering by their link quality. The ordering is 

then broadcasted to all the neighbors so all nodes will have a copy of this information 

about their neighbors. Then, every node chooses their edges according to this local 

information. For each node, XTC maintains a neighbor list in which XTC eliminates the 

farthest neighbors that are reachable by the relays of closer neighbors, hence reduces 

power levels to that node while maintaining the same connectivity. XTC is a simple 

algorithm that preserves the connectivity of the original graph and does not require 

special hardware. More importantly, it does not assume the network graph to be a unit 
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disk graph, which is the standard assumption of most distributed algorithms (such as 

CBTC and LMST) but is not always true in reality. 

The k-Neighbors protocol [29] is based on the control parameter, node degree k, with 

the additional distance information estimated by radio signal strength or time of arrival. 

k-Neighbors is a physical TC algorithm for generating networks connected with high 

probability. The basic algorithm requires initially that every node broadcasts its ID at 

maximum power. Upon receiving broadcast messages from other nodes, every node 

keeps track of its neighbors and estimates the distance associated with them. The nodes 

then compute its k-closest neighbors and these become their k-Neighbors list. The nodes 

exchange their neighbor lists at maximum power and hence, each node would know the 

symmetric neighbors in the neighborhood. Unsymmetrical neighbors are deleted. k-

Neighbors is a simple algorithm that does not require special hardware but does not 

guarantee connectivity. It is also degree-bounded by k. The number of messages 

exchanged in each update is exactly 2n, where n is the number of nodes.  

Local Minimum Spanning Tree (LMST) [25] is another logical topology control 

algorithm that chooses energy efficient edges in the final communication topology. The 

concept is similar to finding the minimum spanning tree (MST) for a graph, except that 

the trees are constructed locally using direct neighbors within a node's maximum 

transmission range, R. In LMST, each node collects one hop neighbors and builds a 

local MST. Then, through negotiations each node selects edges only from its local MST 

to guarantee the network connectivity. It was found that a topology constructed using 

LMST has a maximum degree of six and network connectivity is preserved [25]. 

However, its major disadvantage is the requirement for location information. Although 

the author proposes that the location requirement can be substituted by nodes estimating 

the distance to all the visible nodes and then exchanging the list, this solution involves a 

lot more overheads and is less scalable.  

Cluster based Topology Control (CLTC) [49] is a framework that collects multi-hop 

neighbors' information in a distributed setting and take advantage of centralized 

algorithms applied to the collected information for each node so as to make the network 

connected or 2-connected. The CLTC framework consists of three phases: 
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• Phase 1 - Form clusters by any distributed clustering algorithm, where nodes 

have knowledge only about their restricted-hop neighbors. Note that operations 

in phases 2 and 3 are independent of the specific clustering algorithm used in 

this first phase. 

• Phase 2 - Utilize an appropriate centralized algorithm to calculate the power 

assignments for all members of each cluster such that the resulting cluster 

topology satisfies the given connectivity constraint (i.e. connected or 2-

connected). 

• Phase 3 - Adjust the power levels of nodes on the borders of clusters so as to 

provide appropriate connectivity with adjacent clusters. Hence, the network as a 

whole is connected or 2-connected. 

From this framework, it is clear that the performance of the CLTC framework is 

dependent on the specific clustering algorithm that is used. 

NTC is a Delaunay Triangulation (DT)-based topology control algorithm. It builds a DT 

graph as the starting topology and initiates a negotiation among neighbors to meet the 

node degree requirement. The resulting topology is degree-bounded and is targeted to 

make each node have roughly equal degree and so that the distances to all its neighbors 

are similar. 

Low-Energy Adaptive Clustering Hierarchy (LEACH), a communication protocol for 

microsensor networks [34]. LEACH collects data from distributed microsensors and 

transmits it to a base station. LEACH uses the following clustering-model: Some of the 

nodes elect themselves as cluster-heads. These cluster-heads collect sensor data from 

other nodes in the vicinity and transfer the aggregated data to the base station. Since 

data transfers to the base station dissipate much energy, the nodes take turns with the 

transmission – the cluster-heads "rotate". This rotation of cluster-heads leads to a 

balanced energy consumption of all nodes and hence to a longer lifetime of the network. 

A modification of LEACH’s clusterhead selection algorithm was proposed to reduce 

energy consumption. The energy needed for the transmission of one bit of data from 

node u to node v, is the same as to transmit one bit from v to u (symmetric propagation 

channel). Cluster-heads collect n k-bit messages from n adjacent nodes and compress 

the data to cn k-bit messages which are transmitted to the BS, with c ≤ 1 as the 
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compression coefficient. The operation of LEACH is divided into rounds. Each of these 

rounds consists of a set-up and a steady-state phase. During the set-up phase cluster-

heads are determined and the clusters are organized. During the steady-state phase data 

transfers to the base station occur. 

Hybrid Energy-Efficient Distributed clustering (HEED) [35], an energy-efficient 

distributed clustering approach for ad-hoc sensor networks which has four primary 

goals: (i) prolonging network lifetime by distributing energy consumption, (ii) 

terminating the clustering process within a constant number of iterations/steps, (iii) 

minimizing control overhead (to be linear in the number of nodes), and (iv) producing 

well-distributed cluster heads and compact clusters. HEED periodically selects cluster 

heads according to a hybrid of their residual energy and a secondary parameter, such as 

node proximity to its neighbors or node degree. HEED does not make any assumptions 

about the distribution or density of nodes, or about node capabilities, e.g., location-

awareness. The clustering process terminates in O(1) iterations, and does not depend on 

the network topology or size. The protocol prolongs network operation interval, incurs 

low overhead in terms of processing cycles and messages exchanged, can be easily 

tuned to optimize resource usage according to the network density and application 

requirements. HEED operates in quasi-stationary networks where nodes are location-

unaware and have equal significance. HEED can also be useful in multi-hop networks if 

the necessary conditions for connectivity (the relation between cluster range and 

transmission range under a specified density model) hold. It also achieves fairly uniform 

cluster head distribution across the network. A careful selection of the secondary 

clustering parameter can balance load among cluster heads. 

2.2  Interference Reduction via Topology Control 
In this section, related works in the field of topology control are discussed with special 

focus on the issue of interference. Interference reduction is one of the main motivations 

of topology control besides direct energy conservation by restriction of transmission 

power. Astonishingly however, all the above topology control algorithms at the most 

implicitly try to reduce interference. Where interference is mentioned as an issue at all, 

it is maintained to be confined at a low level as a consequence to sparseness or low 

degree of the resulting topology graph.  
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However, M. Burkhart, et al, in [50] reveal that such an implicit notion of interference is 

not sufficient to reduce interference since message transmission can affect nodes even if 

they are not direct neighbors of the sending node in the resulting topology. Besides 

demonstrating the weakness of modeling interference implicitly, [50] introduces an 

explicit definition for interference in wireless networks. [50] presents a traffic-

independent model and defines the interference of a link e = (u, v) as the cardinality of 

the set of nodes covered by two disks centers at u and v with radius ||uv||, denoted as 

coverage set of link e，cov(e). This model, named as link-interference via coverage, is 

chosen from the assumption that whenever a link (u, v) is used for a send-receive 

transaction all nodes whose distance to node u or node v is less than ||uv|| will be 

affected in some way.  

K. Moaveni and X. Li, in [51], extend this work and propose node-interference via 

coverage model. The interference of a node u is defined as the maximum coverage set 

of links incident on u. However, coverage model is based on the question how many 

other nodes can be disturbed by a given communication node or link. The definition of 

interference suggested in [51] is problematic in two respects. First, it is based on the 

number of nodes affected by communication over a given link. In other words, 

interference is considered to be an issue at the sender instead of at the receiver, where 

message collisions actually prevent proper reception. It can therefore be argued that 

such sender-centric perspective hardly reflects real-world interference. The second 

weakness of the model introduced in [51] is of more technical nature. According to its 

definition of interference, adding (or removing) a single node to a given network can 

dramatically influence the interference measure. Addition of one node to a cluster of 

roughly homogeneously distributed nodes entails the construction of a communication 

link covering all nodes in the network, accordingly - merely by introduction of one 

additional node - the interference value of resulting topology is pushed up from a small 

constant to the maximum possible value, that is the number of nodes in the network. 

This behavior contrasts to the intuition that a single additional node also represents one 

additional packet source potentially causing collisions. Moreover, neglect of the case 

that a particular node might be influenced by multiple communication links with small 

coverage set might lead discontented results of the proposed algorithms in [51]. 
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An attempt to correct for this deficiency is made by P. Von Richenband, et al, in [52], 

where an alternative, receiver-centric, interference model is introduced. In this model, 

node u will be interfered by v whose distance to v is less than Rv, its distance to reach 

the farthest neighbor, or {v | ||uv|| ≤ Rv} formally. It is denoted as node-interference via 

transmission model. Under the assumption that only symmetric edges are considered, it 

can be proved that that nodes set, mentioned above, is equivalent to {v | ||uv|| ≤ Ru}. 

Unfortunately, one fatal drawback is that previous works consider the interference range 

equals to the transmission range. According to the theoretical analysis of actual cause of 

interference in reference [53], by K. Xu, et al, interference range generally differs from 

transmission range and hidden terminals located within the 1.78d distance (d denotes 

the communication distance) of the receiver are also disturbing sources, which is 

neglected in previous works at all times. Researches mistake nodes within the 

transmission range for the only hidden interfering nodes. 

Authors of [54] introduce an explicit definition of interference between edges and 

establish – based on a time-step routing model – a trade-offs between the concepts of 

congestion, energy consumption, and dilation. This interference definition is based on 

the current network traffic. In [54], more attention is also being paid to the fact that if 

nodes are capable of adapting their transmission power – an assumption already made in 

early work that can be considered originators of topology control considerations [55, 

56] – interference ranges correlate with the length of communication links. More 

precisely the interference range of a link depends on the transmission power levels 

chosen by the two nodes communicating over the respective link. While [54] defines 

interference based on current network traffic, [50] introduces a traffic-independent 

notion of interference. Moreover, the latter work shows that the above statement that 

graph sparseness or small degree implies low interference is misleading. The 

interference model described in [50] builds on the question of how many nodes are 

affected by communication over a given link. This sender-centric perspective can 

however be accused to be somewhat artificial and to poorly represent reality, 

interference occurring at the intended receiver of a message. Furthermore, this 

interference measure is susceptible to drastic changes even if single nodes are added to 

or removed from a network. 
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CHAPTER 3 
 

Interference Reduction through TC 
3.1  Network and Interference Model 
 Interference-efficient topology control is to find a sub-graph H from the original graph 

G to minimize interference while preserving fixed properties. 

3.1.1 Network Representation 

An ad hoc network is modeled as an Euclidian graph G = (V, E) with vertices in V 

representing network nodes, and the edges E representing communication links. The 

Euclidian position of the vertices in the graph corresponds to the physical position of 

the nodes in the Euclidian two dimensional space, which means that the edge weight, 

w(u, v), represents the physical distance between nodes u and v. Each node u has a 

maximum transmission range Ru. In order to prevent existing basic communication 

between neighboring nodes from becoming unacceptably cumbersome [57], only 

symmetric edges are considered. Since only undirected links are considered, a link uv 

can only exist if the Euclidian distance between the nodes u and v is no larger than 

min(Ru, Rv). Assume that any node can adjust its transmission power to any value from 

0 to its maximum transmission power, depending on the desired transmission radius: 

when transmitting to node v, node u uses the lowest possible transmission power needed 

to reach v. A common path loss model says that the signal strength received by a node 

can be described as p/dα, where p is the transmission power used by the sending node, d 

is the distance between two nodes, and α is a path loss gradient, depending on the 

transmission environment. Consequently, the energy cost c(u, v) to send a message of 

fixed length directly from node u to node v is θ(|u, v|α). The energy cost of a path is 

defined as the sum of the energy costs of all edges in the path. 

3.1.2 Measurement of Interference 

Intuitionally, a node in the network G is interfered by others, if messages are received 

but not intended for it [58]. From the perspective of the physical layer, a signal arriving 

at a receiver is assumed to be valid if the SNR (Signal to Noise Ratio) is above a certain 

threshold TSNR. Assume a transmission to a receiver with transmitter-receiver d meters 
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apart and at the same time, an interfering node d meters away from the receiver starts 

another transmission. According to analysis in [59], a crucial conclusion is made that 

interference range isඥ ௌܶேோ
ర כ ݀, with an approximation value of 1.78*d when TSINR is 

set to 10 for instance. Previous researchers mistake nodes within the transmission range 

for the only hidden interfering ones. Distinctly, for a node, all active neighbors within 

its interference range are potential interfering sources. Consequently, interference 

amount is defined as the maximum cardinality of active interference neighbors set. 

Given a network N = (V, E), the interference neighbors set of a node u communicating 

with v in N, denoted as ܵܰܫ௨
௩, is defined as follows:  

௨ܵܰܫ 
௩ = {ݓ א ݓ |ܸ א ,ݓሺܦ ඥ ௌܶேோ

ర כ ԡݒݑԡሻ}    3.1 

Consequently, the interference amount of the node is defined as:  

IA (receiver) = max INS୧      3.2 

Where D(u, r) denotes the set of nodes located in the circular area centered at node u 

with radius r, and ||uv|| the communication distance. The receiver node of a Hello 

Message computes its interference amount using the following algorithm:- 

Algorithm 3.1 
Purpose: Calculating the interference amount at the receiver of HM 
Inputs: Hello Message HM 
Outputs: Total interference amount IA(receiver) 
 
Procedure: 

1. For (i=1 to numberOfNeighbors) { 
a. IR = 1.78 * d (receiver, Neighbors (i)) 
b. INS (i) = 0 
c. For (j=1 to numberOfNeighbors) { 

i. If (d (receiver, Neighbors (j)) ≤ IR) 
ii. INS (i) ++ 

d. } 
2. }  
3. IA (receiver) = max ܰܫ ௜ܵ 

 
Where: 
IR refers to Interference Range 
d refers to the Euclidean distance  
INS refers to Interference Neighbor Set 
IA refers to Interference Amount 
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Figure 3.1: Example network to demonstrate the first interference metric. 

Figure 3.1 shows an example network consisting of twenty nodes. The interference 

neighbor set of node u when communicating with node v is seven, while its interference 

neighbor set when communicating with node w is eleven, and when communicating 

with node z its interference neighbor set equals to ten. The maximum of its interference 

amounts is 11. Based on the previous definition node u suffers from interference, and it 

can be measured as follows: 

௨ܵܰܫ 
௩ ൌ 7                3.3 

  ௨ܵܰܫ
௪ ൌ 11                3.4 

  ௨ܵܰܫ
௭ ൌ 10                3.5 

  ሻݑሺܫ ൌ  max௫ୀ௩,௪,௭ ௨ܵܰܫ
௫            3.6 

  ሻݑሺܫ ൌ ௨ܵܰܫ 
௪ ൌ 11              3.7 

The previous definition is problematic, since it works according to the principle: The 

global interference in a network depends solely on the local part with the highest 

interference. Reducing the interference in that part by definition reduces the interference 

of the entire network. One problem is that the metric does not consider the interference 

in general; a network with high interference in one place and low interference 
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everywhere else could have the same interference as another network with equally high 

interference everywhere. We extend the previous work by defining an average 

interference neighbors set as the sum of the interference neighbors sets divided by the 

number of neighbors. 

ሻݎ݁ݒ݅݁ܿ݁ݎሺܣܫ  ൌ  ∑ ܰܫ ௜ܵ/|ܵܰܫ||ூேௌ|
௜ୀଵ      3.8 

Despite the previous extended metric makes a relationship between all local parts of the 

network, from another point of view it suffers from some weakness: it does not take into 

account the real distribution of the interference in the network, which means that several 

networks with different interference amounts in their local parts may have the same 

global interference. In other words, there will be local parts with higher interference 

than the global interference of the entire network which is not realistic, e. g. a network 

with high interference in one place and low interference everywhere else. 

We propose to form an interference measure which functions with the following 

properties: creates a relationship between all local parts of the network, and takes into 

account the maximum interference of the network. This can be achieved by mixing the 

previous two metrics in one equation. 

ሻݎ݁ݒ݅݁ܿ݁ݎሺܣܫ  ൌ  ∑ ܰܫ ௜ܵ/|ܵܰܫ||ூேௌ|
௜ୀଵ כ  ܰܫ ݔܽ݉  ௜ܵୀଵ

|ூேௌ|  3.9 

3.2  Interference-aware CDS-based Topology Construction Algorithm 

IACDS: (Proposed Algorithm) 
Topology control is a well-known strategy to save energy and extend the lifetime of 

wireless mobile ad hoc and sensor networks. In this thesis we exploit the benefits of 

topology control in order to reduce interference in the entire network. So, we propose 

the IACDS algorithm, a simple, distributed, and energy-efficient topology construction 

mechanism that finds a sub-optimal Connected Dominating Set (CDS) to turn 

unnecessary nodes off while keeping the network connected and providing complete 

communication coverage with minimum interference. IACDS algorithm utilizes a 

weighted distance-energy-interference-based metric that permits the network operator to 

trade off the lengths of the branches (distance) for the robustness and durability of the 

tree (energy and interference).  
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Interference-aware connected dominating set-based topology construction 

algorithm: IACDS (in general) 

Interference-efficient topology control is to find a sub-graph H from the original graph 

G to minimize interference while preserving fixed properties (connectivity and low 

power consumption).  

Algorithm 3.2 
Purpose: CDS topology such that the resulting topology is connected and with minimal 
interference. 
Inputs: Original network G =(V, E) 
Outputs: HCDS=(VH, EH) 
 
Procedure: 
 

1. VH = {sink} 
2. Start with the sink node: discover its neighborhood NH 
3. For each node v  NH, calculate the interference metric  
4. Sort nodes in NH in an ascending order of the interference metric 
5. While NH is not empty  
6. Select v  NH with minimum interference metric and outside the coverage area of 

other node in the neighborhood 
− if sink and v are not connected in HCDS then 

VH = VH  {v} 

− end if 
− NH = NH \ {v}  

7. End while 
8. Repeat step 2 with all v's in VH 
9. HCDS = (VH, EH) 

 
 

3.2.1 IACDS TC Algorithm Details 

Interference-aware CDS-based Topology Construction Algorithm 

1. The sink node sends an initial Hello Message 

2. For each neighbor that received the Hello Message 

1) If the node has not been covered yet 

− set its state as covered 

− adopt the sender as its parent node 

− answer back with a Parent Recognition Message 
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2) If the node has been already covered 

− ignore the Hello Message 

3. The parent node sets a timeout to receive the answers from its neighbors 

4. Once this timeout expires, 

1) If it does not receive any Parent Recognition Message 

− Turn off 

2) Otherwise 

− Sort the list in decreasing order with respect to the selection metric 

− Broadcasts a Children Recognition Message (includes the selected 

list) to all its candidates 

5. Once the candidate nodes receive the list, 

− Set a timeout period (proportional to their position in the candidate list) 

waiting for Sleeping Message from their brothers 

6. Once the timeout expires, 

1) If the node receives a Sleeping Message 

− Turns itself off 

2) Otherwise 

− Send a Sleeping Message to turn its brothers off 

− Become a new parent and starts its own process of looking for candidates 

Bonus opportunity 

7. Once every node receives a Sleeping Message, 

Set a timer to send Hello Message and start its own building process. 

3.2.2 Algorithm Description 

The IACDS algorithm assumes no prior knowledge about the position or orientation of 

the nodes; therefore, the nodes do not have an exact geometric view of the topology. 

However, nodes can determine how far a node is based on the strength of the signal 

received, and this information is enough to select a close-to-optimal CDS tree, based on 

the belief that farther nodes will offer better area of communication coverage. The 

IACDS algorithm is executed in 4 moments: Neighborhood Discovery, Children 

Selection, State Decision Based on Selection Metric, and Second Opportunity. 
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 1) Discovering the surrounding neighborhood: The CDS building process is 

started by a predefined node that might be the sink, right after the nodes are deployed. 

The sink, node A in Figure 3.2a, starts the protocol by sending an initial Hello Message. 

This message will allow the neighbors of node A to know their parent node. In Figure 

3.2a, nodes B, C, D, and E will receive the message. Node F is out of reach from node 

A [60].  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2a: Sending Hello Message (neighborhood discovery). 

If the node that receives the message has not been covered by another node, it sets its 

state as covered, adopts the sender as its parent node, and answers back with a Parent 

Recognition Message, as shown in Figure 3.2b. This message also includes a selection 

metric (explained later) which is calculated based on the signal strength of the received 

Hello Message, the remaining energy in the node, and the interference of that node. The 

metric will be used later by the parent node to sort the candidates. If the receiver has 

been already covered by another node, it ignores the Hello Message. The IACDS 

algorithm uses four types of messages: Hello Message, Parent Recognition Message, 

Children Recognition Message, and Sleeping Message. If a parent node does not receive 

any Parent Recognition Messages from its neighbors, it also turns off, such as the case 

of nodes E and B in the final topology, as shown in Figure 3.2f, given that they have no 

children. 
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Figure 3.2b: Sending Parent Recognition Message (answer from candidates with selection metric). 

 2) Forming the children candidates list: The parent node sets a timeout for a 

certain amount of time to receive the answers from its neighbors. Each metric is stored 

in a list of candidates. Once this timeout expires, the parent node sorts the list in 

decreasing order according to the selection metric. The parent node then broadcasts a 

Children Recognition Message that includes the complete sorted list to all its 

candidates. In Figure 3.2c, node A sends the sorted list to nodes B, C, D, and E. Once 

the candidate nodes receive the list, they set a timeout period proportional to their 

position on the candidate list. During that timeout, nodes wait for Sleeping Messages 

from their brothers. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2c: Sending Children Recognition Message (includes a list of selected children). 
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If a node receives a Sleeping Message during the timeout period, it turns itself off, 

meaning that one of its brothers is better qualified to become part of the tree. Based on 

this scheme, the best node according to the metric will send a Sleeping Message first, 

blocking any other node in its range. Therefore, only the other candidate nodes outside 

its area of coverage have the opportunity to start their own generation process. For 

example, in Figure 3.2d, node D received a Sleeping Message from E before its timer 

expired, so it turned off. Otherwise, it sends a Sleeping Message to turn its brothers off. 

At that time, this particular node becomes a new parent node and starts its own process 

of looking for candidates. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2d: Sending Sleeping Message (nodes which receive this message will turn off). 

 3) State decision based on the proposed selection metric: As explained 

before, nodes that received a Hello Message from the parent node, calculate the 

Received Signal Strength Indicator (RSSI) of the received signal, and then calculate a 

metric that is sent back to the parent in the Parent Recognition Message. Upon 

receiving the metrics from all its children, the parent node creates and sends a sorted list 

that, at the end, determines which nodes will be part of the CDS. The IACDS algorithm 

calculates the benefit of including a new node in the CDS using a metric that is 

proportional to the interference of that node, remaining energy of the node, and the 

distance from the parent node, as defined in Equation 3.10: 

,ܿܯ  ݌ ൌ ܹ݅ כ ଵ
ூ஺ሺ௖ሻ

 ൅  ܹ݁ כ ா௖
ா௠௔௫

 ൅ ܹ݀ כ ோௌௌூ௣
ோௌௌூ௠௜௡

   3.10 
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Where c is the candidate node, p is its parent node, We is the weight for the remaining 

energy in the node, Ec is the remaining energy in node c, Emax is the maximum initial 

energy, Wd is the weight for the distance from the parent node, RSSIp is the received 

signal strength from the parent node, and RSSImin is the minimum RSSI to ensure 

connectivity, which is given by the sensitivity of the receiver. The interference amount 

 of the receiver node is calculated using Equation 3.9. 

Equation 3.10 produces a value between 0 and 1 which is assigned to each neighbor in 

the process of selecting the new nodes in the CDS; the higher the value of the metric, 

the higher the priority. As it can be seen from Equation 3.10, the selection metric gives 

priority to those nodes with minimum interference, higher energy, and which are farther 

away from the parent node. The final effect of this choice is to have a CDS with 

minimum interference, fewer active nodes, and better coverage. 

However, proper weight manipulation can satisfy different criteria, as needed. As the 

main goal of the proposed algorithm is to reduce the global interference of the network, 

the interference metric is weighted to its maximum value, 1. If communication coverage 

is to be optimized and the average height of the node in the CDS (number of hops) 

needs to be reduced, the distance metric must be weighted more heavily. The downside 

is that low energy nodes may be included in the CDS, which may introduce early 

failures of nodes, and therefore reduce the lifetime of the network. On the other hand, if 

reliability of the tree is desired, energy must be weighted more. The downside is that the 

CDS may present more active nodes. In my work, a balanced average that compromises 

these two aspects is used. 

 4) Bonus opportunity: Although this methodology works very well, there are 

some cases in which a node sent to sleep is a bottleneck access to a section of the 

network. In order to avoid this situation, every node sets a timer once it receives the 

Sleeping Message to send a Hello Message and starts its own building process. As 

shown in Figure 3.2e, node D will wake up, send a Hello Message and will find node G 

uncovered, so node D will become active. This operation increases the overhead of the 

algorithm, but guarantees total coverage of the nodes in the graph. 
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Figure 3.2e: Checking for children. 

It is worth emphasizing that IACDS is completely distributed and needs no 

synchronization scheme. The process finishes when the last node finishes its own 

creation process. Each node is responsible for its own process and needs no information 

about the status of the overall process. Actually, nodes can start their application-related 

tasks as soon as they are selected as part of the CDS tree. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2f: Final topology. 
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The computational complexity of the IACDS algorithm can be easily calculated based 

on the fact that the sorting function executed by the parent nodes is the most expensive 

operation. Therefore, the complexity of the algorithm is given by the complexity of 

sorting routine, which can be bounded as O(nlog(n)). The message complexity is 

bounded by the worst case of 4 messages in the case of a node that becomes a parent 

node in the first opportunity: Hello, Parent Recognition, Children Recognition, and 

Sleeping messages. However, the number of messages is still defined by O(n) for a 

network with n nodes, with a worst case scenario of 4n messages. 

3.2.3 Finite State Machine and Message Sequence Diagrams 

Although describing a protocol in words is useful for understanding its operation, they 

are more rigorously defined by Finite State Machines, especially in those cases where 

nodes change several times from one state to another during the execution of the 

protocol, and by a timeline of message exchanges. These diagrams are shown in Figure 

3.3(a, b) and Figure 3.4(a, b), respectively. 

The first part of the algorithm is a HELLO-REPLY sequence that is used in the 

neighborhood discovery process. The message sequence is simple: one message 

announces the presence of a node, and a set of nodes, whose number is unknown, 

answers back with a reply message. Given that the initiator has no idea of how many 

nodes are within its transmission range, it waits for a certain amount of time. This timer 

can be static (a fixed value or a random value defined on the fly) or dynamic (value is 

changed after the reception of a new reply message).  

The second part of the protocol consists of the selection and notification processes. In 

this case, the sender node selects the next generation of possible active nodes based on a 

policy (the selection metric), and notifies them one by one using unicast messages.  

The third part is the initiation of the other protocols. Topology construction protocols 

are only used to reduce the size of the initial topology, but they do not necessarily take 

care of maintaining this topology during its operation, or send data messages to the sink. 
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Figure 3.3a: Finite state machine illustrates state changes in IACDS algorithm.  
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Figure 3.3b: Finite state machine illustrates state changes in IACDS algorithm (Bonus opportunity). 
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Figure 3.4a: message sequence diagram illustrates message exchanges in IACDS algorithm. 

Other 
Neighbors of Node A 

Sender
Node A 

Node B
(Neighbors of Node A) 

Send Hello Message

Program Reply Listening Timeout

Hello Message
Sink Address = A 

Level = 0 

Hello Message 
Sink Address = A 

Level = 0 
Receive Hello Message 

Send Reply MessageReply Message  
Selection Metric = smB Reply Message 

Selection Metric = smC 
Reply Message 

Selection Metric = smD

Reply List. Timeout Expires 

Receive Acceptance Message

Program Sleep Listening Timeout

Sleep List. Timeout Expires

Start other protocols

Program Random Timeout 

Random Timeout Expires 

Program Random Timeout

Random Timeout Expires

Acceptance Message
Acceptance Message 

If number of answers is greater than 0  

If number of answers equal to 0  

Sleep  Sleep 

Hello Message
Sink Address = A 

Level = 1  

Hello Message 
Sink Address = A 

Level = 1 



www.manaraa.com

40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4b: Message sequence diagram illustrates message exchanges in IACDS algorithm (Bonus opportunity). 
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CHAPTER 4 

 

Performance Evaluation of IACDS TC Algorithm 
In this chapter, the results of the performance evaluation of IACDS algorithm with 

comparisons to other algorithms are presented. 

4.1  Atarraya Simulator 
Topology Control is a well-known technique in wireless mobile ad hoc and sensor 

networks. Despite the fact that topology control algorithms and protocols have been 

extensively studied, they are currently unavailable in most, if not all, simulation tools. 

In this thesis we use Atarraya, a discrete-event simulation tool specifically designed for 

testing, designing, implementing, and teaching topology control algorithms for wireless 

mobile ad hoc and sensor networks. Atarraya is an event-driven simulator developed in 

Java that presents a new framework for designing and testing topology control 

algorithms. It is an open source application [61].  

4.2  Validation of the Proposed Interference Reduction Mechanism: 

(IACDS) Algorithm 

Case 1: Number of nodes is 10 and communication radius is 63. 

 
Figure 4.1: The initial deployment of 10 nodes network and starting the IACDS algorithm. 
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The sink, node 10 in Figure 4.1, starts the algorithm by sending an initial Hello 

Message. This message will allow the neighbors of node 10 to know their parent node. 

As illustrated in Figure 4.1, nodes 2, 4, 5, and 9 are the only nodes that will receive the 

Hello Message, while nodes 0, 1, 3, 6, 7, and 8 are out of reach from node 10. 

Consequently, nodes 2, 4, 5, and 9 set their state as covered, adopt node 10 as their 

parent node, and answer back with a Parent Recognition Message. This message 

includes the selection metric which is calculated based on the signal strength of the 

received Hello Message, the remaining energy in the node, and the interference amount 

of that node. Node 10 in turn receives the Parent Recognition Messages from its 

neighbors, which include the selection metric of each one , sorts the list of candidates in 

decreasing order according to the selection metric, and then broadcasts a Children 

Recognition Message that includes the complete sorted list to all its candidates (nodes 2, 

4, 5, and 9). Once the candidate nodes receive the candidates list, they set a timeout 

period proportional to their position on the candidate list. 

Table 4.1 shows the list of candidates of the sink node 10 and their corresponding 

selection metrics after applying the proposed IACDS algorithm. The list contains four 

candidates, namely, nodes 9, 4, 2, and 5. 

Table 4.1: Candidates of node 10 (sink node) with their corresponding metrics. 

Node ID Selection Metric 

9 0.90 

4 0.89 

2 0.78 

5 0.63 

 

It is clearly seen from Table 4.1 that node 9 is the best candidate according to the 

selection metric. It will send a Sleeping Message first, and thereby blocking other 

candidate nodes in its range, namely, nodes 5 and 2 from starting a new generation 

process. Node 4 is another candidate node and outside the coverage area of node 9 (will 

not be affected by the Sleeping Message of node 9); it has the opportunity to start its 

own generation process. At this moment only nodes 10, 9, and 4 are active. 
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Figure 4.2: Nodes 9 and 3 start their own generation process. 

Node 9 becomes new parent node and starts its own process of looking for candidates in 

the same manner as done by node 10. As illustrated in Figure 4.2, node 9 receives a 

Parent Recognition Messages from only two neighbors, namely, nodes 3 and 1. 

Consequently, it sorts the candidates list according to the selection metric and then 

broadcasts a Children Recognition Message to its candidates in the sorted list.  

Table 4.2 shows the list of candidates of node 9 and their corresponding selection 

metrics. The list contains two candidates. 

Table 4.2: Candidates of node 9 with their corresponding metrics. 

Node ID Selection Metric 

3 0.85 

1 0.76 

 

As shown in Table 4.2, node 3 is the best candidate according to the selection metric. 

So, node 3 blocks node 1 from starting a new generation process by sending a Sleeping 

Message first, and then starts its own generation process which ends with the formation 

of the sorted list of candidates. As shown in Figure 4.2, node 3 becomes new parent 

node and starts its own process of looking for candidates. The candidates list of node 3 

is empty and node 3 does not receive any Parent Recognition Messages from its 

neighbors so, it turns off.  
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Figure 4.3: Nodes 4 and 7 start their own generation process. 

Similarly, node 4 becomes a new parent node and starts its own process of looking for 

candidates. As illustrated in Figure 4.3, node 4 receives Parent Recognition Messages 

from only two neighbors, namely, nodes 0 and 7. Consequently, it sorts the candidates 

list according to the selection metric and then broadcasts a Children Recognition 

Message to its candidates in the sorted list.  

Table 4.3 shows the list of candidates of node 4 and their corresponding selection 

metrics. The list contains two candidates, namely, nodes 0 and 7. 

Table 4.3: Candidates of node 4 with their corresponding metrics. 

Node ID Selection Metric 

7 0.92 

0 0.84 

 

As shown in Table 4.3, node 7 is the best candidate according to the selection metric. It 

will send a Sleeping Message first, and thereby blocking other candidate nodes in its 

range, namely, node 0 from starting a new generation process. Then, it starts its own 

generation process which ends with the formation of the sorted list of candidates. As 

shown in Figure 4.3, node 7 starts its own process of looking for candidates. The 

candidates list of node 7 is empty and node 7 does not receive any Parent Recognition 

Message from its neighbors, so, it turns off.  



www.manaraa.com

45 
 

 
Figure 4.4: Nodes 0 and 8 start their own generation process. 

Every node sets a timer once it receives the Sleeping Message to take the opportunity to 

send a Hello Message and starts its own building process (bonus opportunity). As 

shown in Figure 4.4, node 0 will wake up and send a Hello Message. Consequently, it 

finds node 8 uncovered. Node 8 sets its state as covered, adopts node 0 as its parent 

node, and answers back with a Parent Recognition Message. Node 0 receives the PRM 

from node 8, and forms its candidates list. At this moment node 0 will become active. 

Table 4.4 shows the list of candidates of node 0 and their corresponding selection 

metrics. The list contains only one candidate, namely, node 8. 

Table 4.4: Candidates of node 0 with their corresponding metrics. 

Node ID Selection Metric 

8 0.88 

 

As shown in Table 4.4, node 8 is the only candidate in the list and it has the opportunity 

to become a new parent and start its own process of looking for candidates. 

Consequently, it finds node 6 uncovered. Node 6 sets its state as covered, adopts node 8 

as its parent node, and answers back with a Parent Recognition Message. Node 8 

receives the PRM from node 6, and forms its candidates list. At this moment node 8 will 

become active. This operation increases the overhead of the algorithm, but guarantees 

total coverage of the nodes in the graph.  
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Table 4.5 shows the list of candidates of node 8 and their corresponding selection 

metrics. The list contains only one candidate, namely, node 6. 

Table 4.5: Candidates of node 8 with their corresponding metrics. 

Node ID Selection Metric 

6 0.80 

 

As shown in Table 4.5, node 6 is the only candidate in the list and it has the opportunity 

to become a new parent and start its own process of looking for candidates. 

 
Figure 4.5: Node 6 starts its own generation process, and the final network. 

Node 6 starts its own process of looking for candidates in the same manner as node 8. 

Figure 4.5 shows that the candidates list of node 6 is empty and it does not receive any 

Parent Recognition Message from any neighbor, so, it turns off. The final topology of 

this scenario is illustrated in Figure 4.5. The IACDS algorithm ends with a topology of 

only 5 active nodes (10, 9, 4, 0, and 8) from original 10 nodes network; with guarantees 

of total coverage of the nodes in the network and that only the best candidate in the 

coverage area is active, which leads to minimum interference in the resulting topology, 

minimum energy consumption, and consequently extending the network life time. The 

final topology shows that among the candidates of node 10, only node 9 is active in the 

coverage area of node 9 and similarly in the coverage area of node 4, only node 4 is 

active. The bonus opportunity allows node 0 to be active, this guarantees the coverage 

of the nodes in the network. Without this opportunity, nodes 8 and 6 would not be 

covered. 
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Case 2: Number of nodes is 20 and communication radius is 63. 

 
Figure 4.6: The initial deployment of 20 nodes network and starting the IACDS algorithm. 

The sink node, 20, starts the algorithm by sending an initial Hello Message. This 

message will allow the neighbors of node 20 to know their parent node. As illustrated in 

Figure 4.6, nodes 0, 1, 5, 9, 10, and 18 are the only nodes that will receive the Hello 

Message, while other nodes are out of reach from node 20. Consequently, nodes 0, 1, 5, 

9, 10, and 18 set their state as covered, adopt node 20 as their parent node, and answer 

back with a Parent Recognition Message. This message includes the selection metric 

which is calculated based on the signal strength of the received Hello Message, the 

remaining energy in the node, and the interference amount of that node. Node 20 in turn 

receives the Parent Recognition Messages from its neighbors, which include the 

selection metric of each one , sorts the list of candidates in decreasing order according 

to the selection metric, and then broadcasts a Children Recognition Message that 

includes the complete sorted list to all its candidates (nodes 0, 1, 5, 9, 10, and 18). Once 

the candidate nodes receive the candidates list, they set a timeout period proportional to 

their position on the candidate list.  

Table 4.6 shows the list of candidates of the sink node 20 and their corresponding 

selection metrics after applying the proposed IACDS algorithm. The list contains six 

candidates, nodes 0, 1, 5, 9, 10, and 18. 
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Table 4.6: Candidates of node 20 (sink node) with their corresponding metrics. 

Node ID Selection Metric 

9 0.99 

10 0.99 

0 0.96 

1 0.91 

5 0.86 

18 0.79 

 

It is clearly seen from Table 4.6 that node 9 is the best candidate according to the 

selection metric. It will send a Sleeping Message first, and thereby blocking other 

candidate nodes in its range, namely, nodes 10 and 18 from starting a new generation 

process. Node 0 is another candidate node and outside the coverage area of node 9 (will 

not be affected by the Sleeping Message of node 9); it also has the opportunity to start 

its own generation process. Node 0 will send a Sleeping Message first, blocking other 

nodes in its range, namely, node 1. Node 5 is another candidate node outside the area of 

coverage of both nodes 9 and 0 (will not be affected by the Sleeping Message sent by 

either node 9 or 0); it similarly has the opportunity to start its own generation process. 

At this moment only nodes 20, 9, 0, and 5 are active. 

 
Figure 4.7: Node 9 starts its own generation process. 
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Node 9 becomes a new parent and starts its own process of looking for candidates in the 

same manner as done by node 20. As illustrated in Figure 4.7, node 9 receives Parent 

Recognition Messages from three neighbors, namely, nodes 2, 16, and 19. 

Consequently, it sorts the candidates list according to the selection metric and then 

broadcasts a Children Recognition Message to its candidates in the sorted list.  

Table 4.7 shows the list of candidates of node 9 and their corresponding selection 

metrics. The list contains three candidates. 

Table 4.7: Candidates of node 9 with their corresponding metrics. 

Node ID Selection Metric 

19 0.87 

2 0.85 

16 0.83 

 

As shown in Table 4.7, node 19 is the best candidate according to the selection metric. 

It will send a Sleeping Message first, and thereby blocking other candidate nodes in its 

range, and then starts its own generation process which ends with the formation of the 

sorted list of candidates. Node 2 is another candidate node and outside the coverage area 

of node 19; it also has the opportunity to start its own generation process. Node 2 will 

send a Sleeping Message first, blocking other nodes in its range, namely, node 16. 

 
Figure 4.8: Nodes 2 and 19 start their own generation process. 
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Nodes 19 and 2 become new parents and start their own process of looking for 

candidates. As illustrated in Figure 4.8, the candidates lists of both node 19 and 2 are 

empty and neither node 19 nor node 2 receive any Parent Recognition Message from 

their neighbors so, both turn off.  

 
Figure 4.9: Node 0 starts its own generation process. 

Node 0 which is the second candidate of the sink becomes a new parent and starts its 

own process of looking for candidates in the same manner as done by node 9. As 

illustrated in Figure 4.9, node 0 receives Parent Recognition Messages from five 

neighbors, namely, nodes 3, 12, 13, 15, and 17. Consequently, it sorts the candidates list 

according to the selection metric and then broadcasts a Children Recognition Message 

to its candidates in the sorted list.  

Table 4.8 shows the list of candidates of node 0 and their corresponding selection 

metrics. The list contains five candidates. 

Table 4.8: Candidates of node 0 with their corresponding metrics. 

Node ID Selection Metric 

15 0.99 

13 0.94 

12 0.85 

17 0.81 

3 0.70 
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It is clearly seen from Table 4.8 that node 15 is the best candidate according to the 

selection metric. It will send a Sleeping Message first, and thereby blocking other 

candidate nodes in its range, namely, nodes 12 and 3 from starting a new generation 

process. Then starts its own generation process which ends with the formation of the 

sorted list of candidates. Node 13 is another candidate node and outside the coverage 

area of node 15 (will not be affected by the Sleeping Message of node 15); it has the 

opportunity to start its own generation process. Node 13 will send a Sleeping Message, 

blocking other nodes in its range, namely, node 17, from starting a new generation 

process.  

 
 Figure 4.10: Node 15 starts its own generation process. 

Node 15 becomes a new parent and starts its own process of looking for candidates in 

the same manner as done by node 0. As illustrated in Figure 4.10, node 15 receives 

Parent Recognition Messages from two neighbors, namely, nodes 7 and 8. These 

messages include the selection metric which is calculated based on the signal strength of 

the received Hello Message, the remaining energy in the node, and the interference 

amount of that node. Consequently, it sorts the candidates list according to that selection 

metric and then broadcasts a Children Recognition Message to its candidates in the 

sorted list. At this moment also node 15 is active. 

Table 4.9 shows the list of candidates of node 15 and their corresponding selection 

metrics. The list contains two candidates, namely, nodes 7 and 8. 
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Table 4.9: Candidates of node 15 with their corresponding metrics. 

Node ID Selection Metric 

8 0. 83 

7 0.80 

 

Table 4.9 shows that node 8 is the best candidate according to the selection metric. It 

will send a Sleeping Message first, and thereby blocking other candidate nodes in its 

range, namely, node 7, from starting a new generation process. Then, it starts its own 

generation process which ends with the formation of the sorted list of candidates. As 

shown in Figure 4.10, the candidates list of node 8 is empty and node 8 does not receive 

any Parent Recognition Message from its neighbors so, it turns off.  

 
Figure 4.11: Node 13 starts its own generation process. 

Node 13 becomes a new parent and starts its own process of looking for candidates in 

the same manner as done by node 15. As illustrated in Figure 4.11, node 13 receives 

Parent Recognition Messages from three neighbors, namely, nodes 4, 6, and 11. 

Consequently, it sorts the candidates list according to the selection metric and then 

broadcasts a Children Recognition Message to its candidates in the sorted list. At this 

moment also node 13 is active. 

Table 4.10 shows the list of candidates of node 13 and their corresponding selection 

metrics. The list contains three candidates, namely, nodes 4, 6, and 11. 
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Table 4.10: Candidates of node 13 with their corresponding metrics. 

Node ID Selection Metric 

4 0.89 

6 0.80 

11 0.73 

 

Table 4.10 shows that node 4 is the best candidate according to the selection metric. It 

will send a Sleeping Message first, and thereby blocking other candidate nodes in its 

range, namely, nodes 6 and 11, from starting a new generation process. Then it starts its 

own generation process which ends with the formation of the sorted list of candidates. 

As shown in Figure 4.11, the candidates list of node 4 is empty and it does not receive 

any Parent Recognition Message from its neighbors so, it turns off.  

 
Figure 4.12: Node 5 starts its own generation process. 

Node 5 which is the other candidate of the sink node becomes a new parent and starts its 

own process of looking for candidates in the same manner. As illustrated in Figure 4.12, 

node 5 receives a Parent Recognition Message from only one neighbor, namely, node 

14. Consequently, it sorts the candidates list according to the selection metric and then 

broadcasts a Children Recognition Message to its candidates in the sorted list.  

Table 4.11 shows the list of candidates of node 5 and their corresponding selection 

metrics. The list contains only one candidate. 
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Table 4.11: Candidates of node 5 with their corresponding metrics. 

Node ID Selection Metric 

14 0.69 

 

As shown in Table 4.11, node 14 is the only candidate in the list and it has the 

opportunity to become a new parent and start its own process of looking for candidates. 

Figure 4.12 shows that the candidates list of node 14 is empty and it does not receive 

any Parent Recognition Message from its neighbors so, it turns off.  

 
Figure 4.13: Final network. 

The final topology of this scenario is illustrated in Figure 4.13. The IACDS algorithm 

ends with a topology of only 6 active nodes (20, 9, 0, 5, 13, and 15) from original 20 

nodes network; with guarantees of total coverage of the nodes in the network and that 

only the best candidate in the coverage area is active, which leads to minimum 

interference in the resulting topology, minimum energy consumption, and consequently 

extending the network life time. The final topology shows that among the candidates of 

node 20, only node 9 is active in the coverage area of node 9 and so on. 

4.3  Performance Evaluation 
Three sets of simulations are included in this section. The first set maintains the number 

of nodes fixed and increases the node degree by changing the communication range of 

the nodes. The second set, on the other hand, varies the network density by changing the 
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number of nodes while maintaining a fixed communication range. In these two 

simulations, the nodes are uniformly distributed in the area of deployment. The third set 

of simulations includes an additional theoretical comparison considering an ideal grid 

topology in which all nodes have the same number of neighbors. Two different grid 

topologies are used: the Grid HV topology, in which each node can listen to its 

horizontal and vertical neighbors; and the Grid HVD topology, in which each node can 

listen to its horizontal, vertical, and diagonal neighbors. Therefore, the number of 

neighbors in those topologies is at most 4 and 8, respectively. These scenarios are 

clearly illustrated in Figure 4.14. In all simulations, each result represents the average 

value of 50 random scenarios. 

 
Figure 4.14: The ideal grid scenarios: Grid HV and Grid HVD. 

To vary the communication range of the nodes, the critical transmission range CTR is 

used. CTR(n) is defined as the minimum communication range that will produce a 

connected topology. The theoretical formula of CTR presented in [62] is given by 

Equation 4.1: 

ሺ݊ሻܴܶܥ  ൌ ට௟௡ሺ௡ሻା௙ሺ௡ሻ
௡గ

      4.1 

Where f(n) is an arbitrary function such that lim௡՜ஶ ݂ሺ݊ሻ ൌ ൅∞. Based on simulations, 

it has been seen that this CTR provides an average number of neighbors between 4 and 

8, even for small values of n. As in [63], in this thesis f(n) = ln(ln(n)) is used. To assess 

the performance of the proposed interference-aware topology construction algorithm, 

three main performance metrics are utilized: 1) number of active nodes in the resulting 
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network, 2) number of messages used in the CDS building process, and 3) amount of 

energy used in the process. The first metric shows how the proposed interference 

reduction mechanism can effectively reduce the amount of active nodes while 

preserving network connectivity and coverage. The other two metrics show how 

efficient the algorithm is in terms of overhead and energy consumption, where: 

݋݅ݐܽݎ ݕ݃ݎ݁݊݁ ݐ݊݁݌ݏ ݈ܽݐ݋ܶ ൌ  ்௢௧௔௟ ௜௡௜௧௜௔௟ ௘௡௘௥௚௬ି்௢௧௔௟ ௙௜௡௔௟ ௘௡௘௥௚௬
்௢௧௔௟ ௜௡௜௧௜௔௟ ௘௡௘௥௚௬

  4.2 

Two topology construction algorithms namely EECDS and CDS Rule K are used to 

evaluate the performance of the proposed interference-aware topology construction 

algorithm. The algorithms are evaluated in scenarios with sparse, medium-dense, and 

dense topologies. The node degree and the density of the network are modified by 

increasing the communication range of the nodes and the number of nodes in the 

network. The three algorithms were implemented in a Java-based simulation tool called 

Atarraya [61]. 

4.3.1 Simulation Environment and Parameters 

The following assumptions were made during the simulation: 

1. Nodes are located in a two dimensional space and have a perfect communication 

coverage disk. 

2. The initial graph is connected. 

3. Distances can be calculated as a metric perfectly proportional to the Received Signal 

Strength Indicator (RSSI). 

4. Idle state energy consumption is assumed negligible. 

The networks are constructed by uniformly distributing nodes in a 200×200 square area. 

Without loss of generality, the mean result is derived from 50 networks randomly 

generated with a fixed number of nodes and different transmission ranges for the first 

simulation (changing the node degree) and different number of nodes and fixed 

transmission range for the second one (changing the node density).  

Table 4.12 presents a summary of the simulation parameters used in the performance 

evaluation of the proposed interference reduction mechanism. 
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Table 4.12: Simulation parameters. 
 

 Simulation 1 Simulation 2 Simulation 3 
Deployment area  200m × 200m 
Number of nodes  100 10, 20, 40, 60, 80, 100 36, 64 
Transmission range  28, 42, 56, 70, 84m 63m 40m 
Node distribution Uniform (200,200)  Grid HV and Grid HVD 
Instances per topology  50 instances 
Maximum energy  1 Joule 
IACDS weights WI = 0.5, WE = 0.5, WD = 0.5 

 

4.3.2 Simulation 1: Changing the Node Degree 

This simulation mainly aims to compare the algorithms when the node degree of the 

network is changed by increasing the transmission range of the nodes while maintaining 

the number of nodes fixed = 100. Given that these algorithms work based on 

information from neighbors, it is important to measure their performance with 

neighborhoods of different sizes.  

 
Figure 4.15: Number of active nodes versus transmission range of the nodes. 

As it can be seen from Figure 4.15, the three algorithms produce CDSs with almost 

similar number of nodes. However, IACDS generates fewer nodes in all scenarios. 
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Another note to be seen from this figure, all the algorithms tend to decrease the number 

of active nodes with the node degree, as expected. 

 
Figure 4.16: Number of sent messages versus transmission range of the nodes. 

 
Figure 4.17: Spent energy ratio versus transmission range of the nodes. 
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Figures 4.16 and 4.17 show two important metrics: the total energy and number of 

messages used to build the CDSs. In this case, the IACDS mechanism shows its 

superior performance. IACDS presents an almost constant energy consumption and 

number of messages compared with the EECDS and CDS-Rule-K algorithms, which 

show a non-linear increase trend. These results can be easily explained.  

The non-linear behavior of the EECDS mechanism is explained by the competition used 

in both phases of the algorithm. This is due to the fact that with a higher communication 

range, more nodes are covered, and the network has fewer nodes in higher levels. This, 

at the same time, reduces the amount of nodes competing to become part of the CDS in 

the outer regions of the topology. In the case of the CDS-Rule-K algorithm, the factor 

that increases the amount of messages (and energy, consequently) is related to its 

pruning process in which every node must update nodes two hops away when it is 

unmarked. This overhead increases with the number of neighbors because more nodes 

will retransmit the message. Also, when the node degree increases, more nodes get 

unmarked and will produce this extra overhead. The linearity of IACDS is a 

consequence of the bounded number of messages that each node needs to transmit, 

which remains almost identical and never goes over 4n in ideal conditions. As 

mentioned before in chapter 3, the IACDS algorithm uses four types of messages: Hello 

Message, Parent Recognition Message, Children Recognition Message, and Sleeping 

Message. Figure 4.18 illustrates the behavior of the proposed interference-aware CDS 

topology control algorithm, IACDS, in a graphical manner. In this case, the number of 

nodes is fixed to 100 and the transmission ranges are varied. 

   Transmission Range: CTR=28m 

  
                           Original network                                  Resulting Network after applying IACDS 

Figure 4.18: Topologies obtained after applying the proposed algorithm, cont. 
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Transmission Range: CTR=42m 

  
                         Original network                                    Resulting Network after applying IACDS 

   Transmission Range: CTR=56m 

  
                           Original network                                  Resulting Network after applying IACDS 

   Transmission Range: CTR=70m 

  
                         Original network                                    Resulting Network after applying IACDS 

Figure 4.18: Topologies obtained after applying the proposed algorithm, cont. 
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     Transmission Range: CTR=84m 

  
                         Original network                                    Resulting Network after applying IACDS 

Figure 4.18: Topologies obtained after applying the proposed algorithm. 

4.3.3 Simulation 2: Changing the Node Density 

The main goal of this simulation is to compare the algorithms when the network density 

is changed by varying the number of nodes in the deployment area while keeping a 

fixed communication range of 63.  

 
Figure 4.19: Number of active nodes versus the number of nodes in the area. 

10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

13

Total number of nodes

Nu
m

be
r 

of
 a

ct
iv

e 
no

de
s

 

 

IA CDS
EECDS
CDS Rule K



www.manaraa.com

62 
 

Communication range of 63 is equivalent in this simulation to 1 × CTR(10). From 

Equation 4.1: 

 1 ൈ ሺ10ሻܴܶܥ ൌ 1 ൈ ට௟௡ሺଵ଴ሻା௟௡ሺ௟௡ሺଵ଴ሻሻ 
ଵ଴గ

    4.3 

 ൌ 1 ൈ √0.0998  ൈ  4.4      ݁݀݅ݏ ܽ݁ݎܽ
 ൌ 0.315 ൈ 200       4.5 
 ൌ 63݉         4.6 

This simulation is important to show how scalable the algorithms are in dense 

topologies and how the resource usage depends on the number of nodes. The results 

shown in Figure 4.19 are similar to the ones shown in simulation 1.  

Figure 4.19 shows that all algorithms need a similar amount of active nodes, although 

before 35, CDS-Rule-K shows a small advantage over IACDS, after 35 both EECDS 

and CDS-Rule-K algorithm go above IACDS. After 60 the CDS-Rule-K algorithm goes 

up to reach its maximum peak at 80, after 80 it goes down, but still above IACDS 

algorithm.  

 
Figure 4.20: Number of sent messages versus the number of nodes in the area. 

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Total number of nodes

Nu
m

be
r 

of
 s

en
t m

es
sa

ge
s

 

 
IA CDS
EECDS
CDS Rule K



www.manaraa.com

63 
 

 
Figure 4.21: Spent energy ratio versus the number of nodes in the area. 

Figures 4.20 and 4.21 show that in terms of the message complexity and energy 

efficiency, the trends are similar. The EECDS and the CDS-Rule-K algorithms present a 

non-linear increase, while the IACDS algorithm shows a low and linearly bounded 

number of messages and energy consumption. This shows that the proposed algorithm 

is scalable and is not highly affected by the number of nodes deployed. Figure 4.22 

illustrates the behavior of the proposed interference-aware CDS topology control 

algorithm, IACDS, in a graphical manner. In this case transmission range is fixed to 63 

and the number of nodes is varied.  
     Number of Nodes = 10 

  
                          Original network                                  Resulting Network after applying IACDS 

Figure 4.22: Topologies obtained after applying the proposed algorithm, cont. 
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  Number of Nodes = 20  

  
                          Original network                                  Resulting Network after applying IACDS 

     Number of Nodes = 40  

  
                        Original network                                    Resulting Network after applying IACDS 

     Number of Nodes = 60  

  
                         Original network                                  Resulting Network after applying IACDS 

Figure 4.22: Topologies obtained after applying the proposed algorithm, cont. 
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     Number of Nodes = 80 

  
                         Original network                                   Resulting Network after applying IACDS 

     Number of Nodes = 100 

  
                          Original network                                  Resulting Network after applying IACDS 

Figure 4.22: Topologies obtained after applying the proposed algorithm. 

4.3.4 Simulation 3: Performance using Ideal Grid Topologies  

The third simulation considers the ideal grid scenario with two variants of node location 

distribution: Grid HV and Grid HVD, as shown in Figure 4.23. This simulation shows 

the performance of the algorithms in a perfectly homogeneous topology, with ideal 

condition of density and node degree, which could be considered a predefined scenario. 

From Figure 4.23a, it can be seen that the IACDS algorithm shows similar or better 

results in the number of active nodes metrics, including 58% of the nodes in the Grid 

HV and 34% in the Grid HVD scenarios, versus 64% and 41% from EECDS, and 61% 

and 31% from CDS-Rule-K algorithms. The other two metrics show an increasing trend 

for EECDS and CDS-Rule-K while IACDS still shows a bounded cost in overhead and 

energy as seen in Figure 23b and Figure 23c, respectively. Table 4.13 summarizes the 

parameters that can be defined for a homogeneous family of nodes.  
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Table 4.13: Grid HV and Grid HVD. 

Grid H-V 
Distribute nodes in the deployment area with a distance of communication 
radius between nodes, so nodes are adjacent with their vertical and 
horizontal neighbors 

Grid H-V-D 
Distribute nodes in the deployment area with a distance of communication 
radius × √2 between nodes, so nodes are adjacent with their vertical, 
horizontal and diagonal neighbors 

 

 
Figure 4.23a: Number of active nodes. 

 
Figure 4.23b: Number of sent messages. 
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Figure 4.23c: Spent energy ratio in the CDS creation process. 

Figure 4.24a shows graphically the behavior of the proposed IACDS algorithm in the 

case of Grid HV. The number of active nodes is 20 from original 36 nodes. Nodes are 

distributed in the deployment area with a distance of communication radius between 

nodes; nodes are distributed close to each other. Results show that the number of active 

nodes is large with respect to the total number of nodes.  

 
Figure 4.24a: Grid HV node location distribution. 

Figure 4.24b shows graphically the behavior of the proposed IACDS algorithm in the 

case of Grid HVD. The number of active nodes is 21 from original 64 nodes. Nodes are 

distributed in the deployment area with a distance of communication radius ×  

between nodes; nodes are distributed separate from each other. Results show that the 

number of active nodes is small with respect to the total number of nodes.  
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Figure 4.24b: Grid HVD node location distribution. 

4.3.5 Area of Communication Coverage 

When applying these algorithms, the active nodes determine the communication 

coverage area. This area is expected to cover as much of the deployment area as 

possible. Figure 4.25 shows the average communication area covered by the algorithms 

using the scenarios from Simulation 2. As it can be seen from this figure, although all 

algorithms produce an almost similar coverage with the selected active nodes, IACDS is 

still better; it covers the same or more area but using fewer resources than the others. 

 
Figure 4.25: Total communication coverage area. 
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4.4  Topology Comparison and Other Simulation Studies 
4.4.1 Simulation Environment and Parameters 

In this experiment, extensive simulations have been conducted to study and compare the 

performance of the proposed interference-aware topology control algorithm, IACDS, 

with Burkhart’s LIFE in [64]. The networks are constructed by distributing nodes 

randomly in a 30×30 square deployment area. Without loss of generality, the mean 

result is derived from 50 networks, generated randomly with different number of nodes 

N and different transmission range TR. 

Table 4.14 presents a summary of the simulation parameters used in this experiment. 

Table 4.14: Simulation parameters for comparison with LIFE. 

Deployment area  30m × 30m 
Number of nodes  N: 20, 30, 40, 50, 60, 70, 80 
Transmission range  TR: 5, 10, 15 
Node distribution Random (30, 30) 
Instances per topology  50 instances 
Maximum energy  1 Joule 

 

In order to measure the interference reduction quantitatively, interference amount 

reduction ratio IARR is defined as: 

ܴܴܣܫ  ൌ ூ஺ሺுଵሻିூ஺ሺுଶሻ
ூ஺ሺுଶሻ

ൈ 100%    4.7 

Where IA(H1) denotes the interference amount of the topology generated by LIFE 

algorithm, and IA(H2) represents the interference amount of the resulting structure 

constructed by the proposed IACDS algorithm, with the metric defined in Equation 

3.10. 

The total interference amount of a network H is defined as: 

ሻܪ௢௧௔௟ሺ்ܣܫ  ൌ ∑ ௏ሺுሻאሻ௨ݑሺܣܫ      4.8 

 

Where from Equation 3.9: 

ሻݑሺܣܫ  ൌ  ∑ ܰܫ ௜ܵ/|ܵܰܫ||ூேௌ|
௜ୀଵ כ  ܰܫ ݔܽ݉  ௜ܵୀଵ

|ூேௌ| 
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4.4.2 Topology Comparison 

To compare between the proposed IACDS algorithm and LIFE algorithm, different 

number of nodes, N, from 20 to 80 with increment 5 has been put and different 

transmission ranges, TR, from 5 to 15 with increment 5 have been used. 

 
Figure 4.26: Interference amount reduction ratio IARR versus the number of nodes. 

Figure 4.26 depicts the interference amount reduction ratio IARR of IACDS TC 

algorithm in comparison to LIFE algorithm [64]. The results show that IARR is 

positive, with approximate peak value of 12.3%. It also shows that the IARR is 

improved as TR and N increase, because the choices of paths between any two nodes of 

the network also increase. Hence, the proposed mechanism works more efficiently. A 

critical observation is that when TR equals to 15 and the density of nodes is large, it has 

little influence on IARR because for such a value TR has great probability to include all 

the possible neighbors in the resulting topology. In the same way, when N is less than a 

fixed value, which depends on TR, IARR equals to 0 nearly and the curves are flat, for 

the reason of fewer edges in the original graph and no guarantee of connectivity. For 

instance, the value is about 55 in the simulations when TR is 5 and about 29 in the 

simulations when TR is 20 while in the simulations when TR is 15 this value is below 

10.  
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Figure 4.27: Interference amount reduction ratio IARR of IACDS and LIFE. 

Figure 4.27 illustrates the performance comparisons of IACDS algorithm and LIFE 

algorithm simultaneously in terms of total interference amount IATotal(H) with the 

transmission range TR = 10. We can note that when N is less than 30, meaninglessness 

occurs due to disconnectivity. These results demonstrate that IACDS algorithm can 

significantly reduce the interference amount for a given network while the total 

interference amount is still maintained, far from degradation. 

4.5  Difference between Topologies of Resulting Graph 
An additional theoretical comparison considering an ideal grid topology in which all 

nodes have the same number of neighbors is included. Two different grid topologies are 

used: the square topology, and the triangle topology. The difference between topologies 

of resulting graph is depicted distinctly in Figure 4.28. Another group is illustrated in 

Figure 4.29 and Figure 4.30. The red circles have been plotted on vertices to 

demonstrate the active nodes in the resulting topology. Difference in the process of 

choosing nodes can be clearly noticed. For example, when node location distribution is 

triangle the IACDS algorithm produces a topology with 11 active nodes, on the other 

hand, in the case of CDS Rule K algorithm it produces 78 active nodes. An observation 
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is that IACDS algorithm chooses nodes which satisfied the selection metric to avoid 

more nodes interfered by the communicating neighbors, which also is illustrated in 

Figure 4.29 and Figure 4.30, in case of square node location distribution and 

communication radius of 53 and 42, respectively. The number of active nodes that can 

still reach the sink node - those that still can provide information to the sink - is and 

important value because if the sink gets isolated, no matter how many active nodes 

remain, all of them are useless because the information they produce gets lost. 

 

 
Figure 4.28: Topology generated by IACDS and CDS Rule K. 

Figure 4.28 shows the different behaviors of IACDS and CDS Rule K algorithms in the 

case of triangle node location distribution, total number of nodes is 85, and 

communication radius is 63. Difference in the process of choosing nodes can be clearly 

noticed in the figure. IACDS algorithm produces only 11 reachable active neighbors 

from the sink; on the other hand, CDS Rule K algorithm produces 78 reachable active 

neighbors from the sink. 
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Figure 4.29: Topology generated by IACDS and CDS Rule K. 

Figure 4.29 shows the different behaviors of IACDS and CDS Rule K algorithms in the 

case of square node location distribution, total number of nodes is 122, and 

communication radius is 53. Difference in the process of choosing nodes can be clearly 

noticed in the figure. IACDS algorithm produces only 19 reachable active neighbors 

from the sink; on the other hand, CDS Rule K algorithm produces 106 reachable active 

neighbors from the sink. 

Figure 4.30 similarly shows the different behaviors of IACDS and CDS Rule K 

algorithms in the case of square node location distribution, total number of nodes is 

122, and communication radius is 42. Difference in the process of choosing nodes can 

be clearly noticed in the figure. IACDS algorithm produces only 27 reachable active 

neighbors from the sink; on the other hand, CDS Rule K algorithm produces 115 

reachable active neighbors from the sink. 
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Figure 4.30: Topology generated by IACDS and CDS Rule K. 

4.6  Sensitivity Analysis on Topology Maintenance Scheme 
The networks are constructed by distributing nodes randomly in a 200 × 200 square 

area. Simple sensor & data, and routing/forwarding protocols are used, which are 

available by the Atarraya simulator. Table 4.15 presents a summary of the simulation 

parameters used in this experiment of sensitivity analysis performed on a TM scheme. 

Table 4.15: Simulation parameters for sensitivity analysis performed on TM scheme. 

Deployment area  200m × 200m 
Number of nodes  100 
Transmission range  35 equivalent to: 1.25xCTR(100) 
Node distribution Uniform (200,200) 
Maximum energy  1 Joule 
Energy threshold Energy percentage used to invoke energy-triggered topology maintenance 

protocols. Every time the energy of a node reaches this energy threshold 
value, since the last invocation of the topology maintenance protocol, the 
node will invoke the protocol again.  
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The final experiment shows a sensitivity analysis performed on a topology maintenance 

scheme, which tests the influence of the energy threshold on the lifetime of the network. 

Figure 31 shows the number of active nodes over time of the topology maintenance 

protocol called Dynamic Global Energy Topology Recreation (DGETRec), using 4 

different energy thresholds; they are set to 5%, 10%, 25%, and 50% of nodes' remaining 

capacity. Using this topology maintenance scheme, a new topology construction takes 

place using the IACDS every time a node reaches the energy threshold set, i.e., when it 

has consumed 95%, 90%, 75% and 50% of its total energy.  

 
Figure 4.31: A test of sensitivity of DGETRec topology maintenance protocol. 

Figure 4.31 shows that increasing energy threshold positively influences the lifetime of 

the network. In other words, nodes are kept active over time of the topology as longer as 

possible. This result can be justified. The best case when the threshold is set, for 

example, to 50% of node's remaining energy. Every time a node consumed half its 

remaining energy, by means of (DGETRec) topology maintenance scheme, a new 

topology construction will take place using the IACDS algorithm, which gives the 

opportunity to change the states of the nodes based on their remaining energy. This 

opportunity increases as the energy threshold increases, i.e., when the remaining energy 

is 50% is better than 25%. In the case of 10% threshold value, the number of active 
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nodes is 31 at the beginning of the simulation time. By the work of the sensor & data 

and routing/forwarding protocols, at 1736.106 simulation time, the number of active 

nodes reduced sharply. By the invocation of the IACDS topology construction 

algorithm when the threshold is reached, the number of active nodes increased again. 

The same scenario is repeated at simulation time 3540.749. These behaviors increase 

the network life time by keeping the nodes active over the time of the topology. 

Gradually, at simulation time 4639.417 until the end of the simulation, nodes become 

dead. This kind of experiments is very useful to determine the best maintenance policy 

for the proposed topology construction protocol. Figure 4.32 shows the number of 

active nodes over time of 4 different topology maintenance protocols (DGETRec, 

SGETRot, DGTTRec, and SGTTRot) when the threshold is set to 25% of nodes' 

remaining energy. 

 
Figure 4.32: A test of sensitivity of topology maintenance protocols. 

Clearly seen from Figure 4.32, the best maintenance policy for the proposed IACDS 

topology construction algorithm is DGTTRec, since it satisfied the larger network 

lifetime.  
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CHAPTER 5 
 

Conclusion and Future Work 
5.1  Conclusion 

Due to physical constraints, wireless ad hoc and sensor nodes are primarily powered by 

exhaustible energy resources like batteries. Consequently, energy is the limiting factor 

for network lifetime. Great efforts have been made to reduce node energy consumption 

and thus extend network lifetime. One of the foremost approaches to achieve substantial 

energy conservation is by minimizing interference between network nodes. Confining 

interference lowers energy consumption by reducing the number of collisions and 

consequently packet retransmissions on the media access layer. Topology control draws 

considerable attentions recently in wireless mobile ad hoc and sensor networks for 

interference reduction. It is also a well-known strategy to save energy and extend the 

networks lifetime. The concept of topology control restricts interference by reducing the 

transmission power levels at the network nodes and cutting off long-range connections 

in a coordinated way. At the same time, transmission power reduction has to proceed in 

such a way that the resulting topology preserves connectivity.  

In this thesis, such benefits of topology control were exploited in order to reduce the 

network interference. A new interference computation model was proposed which aims 

to reflect the interference inducement on the physical layer, and functions with the 

following properties: creates a relationship between all local parts of the network, and 

takes into account the maximum interference of the network. This was achieved by 

mixing the two metrics proposed in Equations 3.2 and 3.8 in a single equation, 3.9. The 

proposed interference metric (Equation 3.9) was embedded in a selection metric, 

Equation 3.10, which produces a value between 0 and 1 that is assigned to each 

neighbor in the process of selecting the new nodes in the CDS; the higher the value of 

the metric, the higher the priority. As it can be seen from Equation 3.5, the selection 

metric gives priority to those nodes with minimum interference, higher energy, and 

which are farther away from the parent node. The final effect of this choice is to have a 

CDS with minimum interference, fewer active nodes, and better coverage. However, 
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proper weight manipulation can satisfy different criteria, as needed. As the main goal of 

the proposed algorithm is to reduce the global interference of the network, the 

interference metric is weighted to its maximum value, 1. If communication coverage is 

to be optimized and the average height of the node in the CDS (number of hops) needs 

to be reduced, the distance metric must be weighted more heavily. The downside is that 

low energy nodes may be included in the CDS, which may introduce early failures of 

nodes, and therefore reduce the lifetime of the network. On the other hand, if reliability 

of the tree is desired, energy must be weighted more.  

In this thesis, the primary effort has been devoted to propose a new topology 

construction algorithm, namely, IACDS algorithm, a simple, distributed, interference-

aware and energy-efficient topology construction mechanism that finds a sub-optimal 

Connected Dominating Set (CDS) to turn unnecessary nodes off while keeping the 

network connected and providing complete communication coverage with minimum 

interference. IACDS algorithm utilizes a weighted (distance-energy-interference)-based 

metric that permits the network operator to trade off the lengths of the branches 

(distance) for the robustness and durability of the CDS (energy and interference).  

Through extensive simulation experiments, results show the superiority of the IACDS 

algorithm compared with the existing alternatives, EECDS and CDS-Rule-K 

algorithms, in terms of number of active nodes needed, message complexity, and energy 

efficiency. The results show that IACDS only needs 10.5% and 52% of the nodes active 

in dense and sparse scenarios while preserving network connectivity and 

communication coverage, versus 10.6% and 60%, and 11.2% and 49% for the EECDS 

and CDS-Rule-K algorithms. More importantly, IACDS provides a low linearly 

bounded number of messages and energy usage, compared with non-linear increasing 

trends shown by the CDS-Rule-K and EECDS algorithms. This last aspect is extremely 

important in order to use this algorithm in a complete topology control solution where 

the CDS network will have to be changed many times. The results via simulation also 

show that, compared with LIFE algorithm, the proposed IACDS algorithm outperforms 

on the fact that interference amount can be reduced up, while the total interference 

doesn't degrade the network. On the other hand, simulations show that the best 
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maintenance policy for the proposed IACDS topology construction algorithm is 

DGTTRec, since it satisfied the larger network lifetime.  

5.2  Future Work 
The major goal of topology control in this thesis concerns the tradeoffs between 

connectivity and interference reduction. There are, however, other aspects that may be 

related to topology control, which can be investigated. 

• Exploiting topology control in terms of optimizing the network based on data traffic 

and routing. We can combine both and get a more complete picture of the network 

structure. 

• The development of an algorithm which integrates topology control and routing in 

wireless networks. The algorithm sets up bandwidth-guaranteed paths between 

nodes when the demands for such paths arrive sequentially and future demands are 

unknown. This work extends the concept of minimum interference routing to 

include topology control. Additionally, the proposed algorithm may require 

determining an approximation ratio to the optimal solution, as a performance metric 

of the algorithm. 
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